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FOREWORD

An international Summer School was held at the University of Ioannina, from June 26 to
June 30 2000, as a satellite conference of the European Congress of Mathematics during summer
2000.

The theme of the School was “Interactions between Algebraic topology and Invariant
Theory” and the aim to enrich and strength research relations among young researchers working
on algebraic topology, invariant theory, and related areas. The program employed to accomplish
our objectives was by short courses given by leading experts in these fields and problem sessions
where common problems and research methods were recognized and demonstrated on particular
research projects.

Four mini courses were delivered by:
H. E. A. Campbell, Modular Invariant Theory;
F. R. Cohen, Algebraic Topology;
L. Smith, Invariant Theory;
R. M. W. Wood, Hit problems and the Steenrod algebra.

We thank all the participants who undoubtedly contributed to the success of the event and
the speakers for their effort in the preparation of their lectures and these notes. We also thank
Fred Cohen and Larry Smith who worked very hard for organizing such an excellent scientific
program. Special thanks to Fred Cohen for his encouragement and smooth handle of various
aspects during the preparation of the school and Reg Wood for replacing Said Zarati at the last
moment.

We want to express our gratitude to the University of Ioannina and in particular all
members of the Section of Algebra and Geometry in the Department of Mathematics for their
continuing encouragement and support. We will not mention internal or external bureaus or
committees, which did not respond, but we will mention the great support we received from the
Greek General Secretariat for Research and Technology, Ministry of Education and Religious
Affairs (EPEAEK), and Prefecture of Ioannina. Without them, that event would not have taken
place.

Nondas Kechagias
December, 2000
Ioannina.
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MODULAR INVARIANT THEORY
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AND INVARIANT THEORY,
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H E A CAMPBELL

ABSTRACT. This modest work provides some insight into the sub-
ject of modular invariant theory.
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1. INTRODUCTION.

I have gathered here some of the results and problems of invariant
theory that I find found particularly interesting and exciting together
with some of the necessary background material. Of course, the sum-
mer school is intended for graduate students, so these lectures are aimed
at them. These are the lectures that I would use to introduce a new
student to the subject. My goal has been to illustrate that there are
many interesting and fascinating problems that can be tackled with
only a modest knowledge of the techniques of modern algebra. The
books of Benson [B] and Smith [Sm(a)] are appropriate references.

In addition to my own interests, I have tried to track to some degree
the lectures of the other speakers, and this led to several revisions of
the original material while at the school.

The second and third sections of this note are intended to give stu-
dents an idea of the elements of invariant theory: homogeneous sys-
tems of parameters, resolutions by syzygies, Poincaré series, and several
examples: the symmetric and alternating groups in their usual repre-
sentation, permutation groups, the general linear and upper triangular
groups, as well as a few selected examples. An example of the MAGMA
code needed to do a specific calculation is given here. The first lecture
covered much of the second and third sections of this note.

The fourth section concentrates on the two fundamental questions,
namely, given a group or a class of groups, what can be said about the
structure of its ring of invariants: when is the invariant ring polynomial,
a hypersurface, a complete intersection algebra, Gorenstein, or Cohen-
Macaulay? Alternately, we’d like to be able to describe generators for

such rings of invariants, and the relations among those generators.
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Section five is a discussion of the case of the cyclic group of order p
and its representations in characteristic p.

Section six consists of two distinct open problems in invariant theory.
I included the second of these because it involves the Steenrod algebra
and so related well to Smith’s lectures.

I include here two lists of references, one from the literature at large,
and a list of invariant theory papers I've been involved in over the past
few years.

Acknowledgements. I would like to extend my warmest thanks
to the participants in the summer school on connections between alge-
braic topology and invariant theory. Their enthusiasm and energy for
the school made the week a fantastic and wonderful experience. I'd also
like to congratulate Dr Epiminondas Kechagias, the University of Ioan-
nina, and the City of loannina, whose hospitality and warmth made
the conference a joy to attend, and a joy at which to speak. Thank
you, Nondas.

2. LECTURE ON ELEMENTS OF INVARIANT THEORY

Suppose R is any non-negatively graded, finitely generated, con-
nected commutative algebra over a field F, so that R = @4>0R4. Here,
of course, Ry denotes the elements of R of degree d, and we are assum-
ing that Ry = F. Please refer to [B] and [Sm(a)] as needed.

The Krull dimension is the maximal number of algebraically inde-
pendent elements in R, denoted here by n.

In our situation, we start with a (fixed representation of a) finite
group G C GI(V) for V a vector space of dimension n over a field F of
characteristic p > 0. We let F[V]¢ = {f € F[V] | o(f) = f,Vo € G},
denote the ring of invariants, R = F[V]¢ C F[V]. We denote the order
of G by |G|: in this note, we only consider finite groups. The Krull
dimension of F[V] is n.

We denote a monomial 2! - - - zi» by z! for the sequence I = (21, . . ., i5)
and we denote its degree by |I| = i; +- - - +14,. We note that the action
of G on F[V] preserves degree, and therefore, in this series of lectures
we always consider homogeneous polynomials, that is, f = Zl Ij=d @ rxl,
where a; € F.

Homogeneous Systems of Parameters. A homogeneous sys-
tem of parameters for R is a set {fi,..., fo} With the property that R
is finitely generated as an module over H = F[f1, ..., f»]. Equivalently,
R/(H,) is a (graded) finite dimensional algebra. Here, of course, (H,)
denotes the ideal of R generated by the positive degree elements of H.

3



The Noether normalization lemma (see [S(a), pg 112]) guarantees that
such a homogeneous system of parameters always exists.

If F denotes the algebraic closure of F, then {fi,..., fn} is a ho-
mogeneous system of parameters if and only if the only common zero
of this set over I is {0}, see [S(a), pg 114]. This is not, in general,
all that easy to check. There are, however, some handy homogeneous
systems of parameters available. If F is finite then we may always use
the Dickson invariants as a homogeneous system of parameters, see
section three. If our group is a permutation group, then the elemen-
tary symmetric functions form a homogeneous system of parameters,
see section three. If our group is p-group represented over a finite field,
then Mui has constructed a homogeneous system of parameters, see
section three.

If our group is non-modular, that is, if |G|™* € F, then there are
regular sequences of maximal length n, and any such will form a ho-
mogeneous system of parameters. Recall that a sequence {fi,..., fn}
is regular if f; is not a zero divisor in the quotient R/(f1,..., fi-1), for
each 7, 1 < i < n. This may be difficult to check.

I note as well that we may form the Jacobian

ofi
T =T f) = del(5H.
If 7 # 0 then {fi,..., fo} is algebraically independent. However, this
is a weaker condition: if F(V") denotes the field of fractions of the do-
main F[V], and J(fi,..., fn) # 0, then F(V) is finitely generated over
F(fi1,..., fa) but F[V] need not be finitely generated over F[fi,..., fa].
For example, the set {z,zy} in R = F[z, y] has non-zero Jacobian, but
R is not finite as a module over F[z, zy]. However, it is easy to check
whether or not the Jacobian is non-zero, and so its computation may
be used to rule out certain sequences. See Benson, [B, pg 64] for more
details.

Finally, we note that there is a construction due to Dade which pro-
vides a homogeneous system of parameters all of degrees less than |G|
provided the field is infinite. If the field is finite, we may extend the
coefficients to F, use Dade’s argument and then restrict to a finite ex-
tension of the original field. The construction can be found in Stanley’s
paper [S].

The Poincaré series. We define the Poincaré series of R as
P(R,t) = dimp(R;)t"
>0

This series is sometimes called the Hilbert series of R as well.
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Suppose R = F[hy,...,hs] is a polynomial algebra on generators of

degrees d;. Then
G |

P(R,t)= || ——=-
This is apparent when we consider that
b 1+ 4828 4. ™.
1—¢d

Suppose R is a free module over H = F[hy, ..., hy] on generators f;,
of degrees m;, i =1,...,7. Then
Y AL S SER NS Ak
EBlR A= \

RO =T
Structures. If R is free over one homogeneous system of parame-
ters, then it is free over all such, and we say that R is Cohen-Macaulay.
Because we can average polynomials over the group, it can be shown

that all non-modular groups have Cohen-Macaulay rings of invariants.
In more detail, we can form the trace or transfer map

Tr : F[V] — F[V]¢

by the rule Tr(f) = 3 ,cq0(f). The transfer is a map of F[V]%-
modules, and if G is a non-modular group, then the transfer is onto.
This is false for modular groups, but there is still a lot of information
imbedded in the image of the transfer, and the map is the subject of a
fair amount of current research.

It seems to be rare that modular groups have Cohen-Macaulay rings
of invariants, you’ll read more about this later on.

You know what is meant if R is a polynomial algebra. If R is gen-
erated by n + 1 elements then we say R is a hypersurface. If R/H, is
a Poincaré duality algebra, then R is said to be Gorenstein. If R is a
quotient of a polynomial algebra by the ideal generated by a regular
sequence, then we say R is a complete intersection algebra.

All of these definitions deserve much fuller exploration, but we won'’t
have space for much.

Resolutions by means of syzygies. We let Q(R) denote the
vector space of indecomposables R/R%. Any lift of any basis for R
determines a minimal generating set for R as an algebra.

Let {f1,.-., fs} denote a minimal algebra generating set for R. Let
A = Flzy,...,2s) denote the polynomial algebra on generators z; of
degree |f;| and p the obvious map from A to R. The map p provides R
with the structure of an A-module. A resolution of R as an A-module

is called a resolution of R by means of syzygies. The resolution has
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length at most s. If R is Cohen-Macaulay then the resolution has
length exactly s — n

O—-M;,—:---—- M —A—-R—0.
We note that

P(R,t) =Y (-1)'P(M;1).
=0
Since A is a polynomial algebra, we have that P(4) = [];_, ﬂTtl'fm
And, as a free A-module, M; = GB’“ _1A¢; for some {¢; € M;} of degrees
mj. Therefore, P(M;,t) = t™ + - +¢™ /[[;_, (1 — tHf:l).

Molien’s Theorem. Suppose |G|~! € F, that is, G is a non-
modular group. Elements of representation theory give us a complex
representation of G which shares the same Poincaré series as F[V]¢,
see [Si, pg 504]. Over the complex numbers, the elements of character
theory give us the following.

Theorem. (Molien)

[V]6,t
PEVT.?) = IG]Zdetl—-tg

As an example, we note that any permutation g of n variables is a
product of cycles g;, - - - g;,. Here I mean that g;, is a cycle of length i;.
It can be shown that det(1 —tg) = HLl(l — t4).

As a further example, if g has eigenvalues A, ..., )\, then

det(1 —tg) = [ (1 — Aa).

i=1

Construction of invariants. Given G C GI(V) and an element

[ € F[V] we define the G-orbit of f, to be {g(f) | ¢ € G} denoted

Oc(f). A slightly different way to define the orbit of f is to de-

fine Stabe(f) = {g € G | g(f) = f}. Then Og(f) = {9(f) | g €

G/Stabe(f)}. Here G/Stabg(f) denotes a set of coset representatives.

Suppose, then, that |Og(f)| = m. From here, we can form the
polynomial

Pit)= [ (t-h) =D (-1)st™,
heOg(f) i=0

where s; € F[V]€. The coefficients are elementary symmetric functions

in the elements of Og(f). That is, if we write Og(F) = {f1,..., fm}
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then

51 = fubeo fon s2=fifat e Frctfmaeos
Smo= fiofm

Smith [S(a)] refers to the invariants so constructed as orbit Chern
classes.

3. EXAMPLES.

Suppose G = C; acts on V* = (z,y) by

10 01
We observe that we have g(z'y?) = z7y". In particular, (zy)* is invari-
ant. If i # j then x*y’ +27y" is invariant. This suggests that ifi = j+k
then we write

2y’ + a2y’ = (ey)’ (= + )
= (zy)/(z + y)* + other terms.
It isn’t difficult to show from here that
F[V]¢ = Flz + v, zy)].

This is the best possible situation in invariant theory, in which the
ring of invariant polynomials is again polynomial algebra. We see from
this calculation, or from Molien’s theorem, that
1

(1-t)(1—1¢t2)
Hand Calculations. Suppose G acts on V* = (z,y) by the ma-

trices {| é 2 l, g=] _01 _(_)1 ]}. We note that g(z') = (—1)'z" so

that z¢ is invariant if and only if ¢ = 2j. Similarly, 3* is invariant if
and only if 4 = 2j. We have z% = (z2)’. Moreover, we observe that
g(z*y?) = r'y* is invariant.

It isn’t hard to prove from here that F[V]¢ = F[z?,y?, zy]. There
are a variety of ways we can parse this, One view is that

F[V]¢ = Fla, b, d/(c* — ab)
where |a| = |b| = |¢| = 2. In another, we observe that {z? y*} forms
homogeneous system of parameters for F[V]¢, and that F[V]€ is a free

module over H = F[z?,%?] on the basis {1, zy}.

Q What is the Poincaré series of this ring of invariants?
7
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Example: Calculations in Magma. Magma is a computer pro-
gram that is, at the moment, the language of choice of the Invariant
Theory Group at Queen’s. It incorporates algorithms due to Gregor
Kemper and others. Here is an excerpt from a Magma session that com-
putes the example of Bertin. The example itself is important in the
history of commutative algebra as the first example of a unique factor-
ization domain which was not Cohen-Macaulay, answering a question
of Kaplansky.

In what you read below, you will find the user input next to the

>

prompt, and the replies from Magma without such a prompt. Most
of the Magma commands are self-explanatory. However, the reader
should know that the command Primarylnvariants computes a homo-
geneous system of parameters, while Secondarylnvariants computes a
set of module generators for the ring of invariants over the polynomial
algebra generated by the homogeneous system. The command To-
talDegree reports on the degrees of the polynomials in the set given as
its argument, while Fundamentallnvariants computes a minimal gen-
erating set for the ring of invariants as an algebra.

[eddy@noether] $magmaV2.5
Magma V2.5-1 Mon Nov 1 1999 08:09:07

[Seed = 1416756397] Type ? for help.
Type <Ctrl>-D to quit.

> G := MatrixGroup<4,GF(2) |

(0,1,0,0, 0,0,1,0, 0,0,0,1, 1,0,0,0] >;

> #G;

4

> R := InvariantRing(G);

> time prim := PrimaryInvariants(R);
Time: 0.019

> [TotalDegree(f): f in prim];
[ 1, 2, 2, 4]
> 8<x,y,z,w> := PolynomialRing(R);
> prim;
[
T+t ytz+ow
x*y + xX*xw + y*z + Z*y,
X*z + yruw,
XHRYRZHY



]

> time sec := SecondaryInvariants(R);
Time: 0.029

> [TotalDegree(f): f in sec];

[0, 3, 3, 4, 51

> IsCohenMacaulay(R) ;

false
> time fun := FundamentalInvariants(R);
Time: 0.000

> [TotalDegree(f): f in funl;

[1,2, 2, 3, 3, 4, 4, 5]

Symmetric Functions. Consider G = £, C GI(V) acting as all

permutations of a basis {z1,...,z,} for V*. We note that Og(z1) =
{21,...,2,} and that Pz, () = [Ti=, (¢ — 2:) = 2_5_o(—1)7s;t". Here,

the s; is the j-th elementary symmetric function
§; =X1ZT2---Tj T & SR Tn—j4+1Tn—j42 " Tn-

Of course, the elementary symmetric functions enjoy many beautiful
properties, and symmetric functions occur in many different situations
in mathematics.
Exercise Prove that {sj,...s,} are algebraically independent, and
hence that F(sy,..., s,) has transcendence degree n.

Now we note that F(V)¢ c F(V) is a Galois extension, with Galois
group G, hence of transcendence degree |G| = n!. Further,

]F(S]_, sstmn ,Sn) s ]F(V)

has transcendence degree [[~_, |s:|. Therefore, F(s,...,s,) = F(V)C.
However, a polynomial algebra is integrally closed and hence

Fls1,...,8] = F[V]C.

The paragraph just above provides a general template for proving
that rings of invariant are polynomial algebras, if, in fact, they are.

Of course, this is far from the end of the story. For example, given a
symmetric function, how can it be written in terms of the elementary
symmetric functions? As well, there are other generating sets for the
symmetric functions, for example, the power sums

i i
hy=z] +. . &,

for 1 < ¢ < n. The sum of all monomials of a given degree d is called the
complete symmetric function of degree d. There is great fun to be had
9



in trying to understand how to rewrite symmetric functions expressed
in one way or another in a different way.

The Alternating groups. We study A, the sub-group of X,, con-
sisting of all even permutations. We know that an alternating function
is the sum of a symmetric function together with a symmetric function
times the discriminant. Here the discriminant may be described as

Ap, = H (mj""mi)a

1<i<j<n

if p=0 or if p > 2. Otherwise take the orbit sum of 712}~ 2 .- z,_;.
In modern language, we have

F[V]# = F[V]® @ F[V]*"A.

Hence, F[V]#" is generated by n + 1 elements as an algebra, and so
F[V]4~ is a hypersurface. It is easy to see that A? is invariant under
Y, whenp=0orp>2.

All of this is nicely described in [S(a), pg 10].

For now we note that we have two Galois extensions

F(v)™ C F(V)* C F(V).

The one on the right has Galois group A,, hence has transcendence
degree |A,|. The Galois group from one end to the other is |Z,| = n!.
Further, the index [E, : A,] = 2, and we have F(V)**[A*!] has degree
two as an extension of the field of fractions of the ring F[V]*~. Therefore
F(V)2[A$] = F(V)4a,

Exercise. Prove F(V)*[A*!] = F(V)#» implies F[V]4» = F[V]* @
F[V]Z=A.

This kind of argument will work more generally for Cohen-Macaulay

rings.

Invariants of Permutation Groups. Suppose G C T, C GI(V).
That is, G is a permutation group. A key observation is that every ele-
ment of G takes monomials to monomials. Therefore, given a monomial
z!, we form the orbit sum s(I) = 3 co/stapg(ar) 9(27)-

Lemma. The orbit sums s(I) of degree d form a basis for F[V]§.

Proof. Any f € F[V] may be written as sum of monomials f =
2 in=a@z’. But for any g € G we have g(f) = 3 arg(z’). It fol-
lows that, if f is G-invariant and 27 € Og(z’), then ay = a;. The
result is immediate. &
Corollary. The Poincaré series of F[V|¢ depends only on G C I,
and not on the field F.

10



Theorem. (Gébel) If G is a permutation group then F[V]C is gener-
n
ated in degrees less than or equal to | 2

Key idea. We say that a sequence I has no 2-gaps if the entries of I,
viewed as a set, are consecutive, and include 0. We can show that any
invariant of the form s(I) where the entries of I are not consecutive, or
are all positive, can be decomposed — shown to be a sum of product
of elements of smaller degree — by subtracting 1’s from every entry
above the largest gap. Here are some of the details.

Proof. We are going to induct on the following order. Given an ex-
ponent sequence, I, of degree d, we think of I as a partition of d and
write M(I) = (Mo(1), \i({), ..., Aa(I)) where ); is the number of entries
of I equal to . We compare exponent sequences / and J of the same
degree by the lexicographic order on A(I) and A(J) from right to left,
that is, by comparing the number of largest entries, and if they are
equal, the number of next largest entries, and so on. Note that any
two sequences of the same size in this order are permutations of each
other.

In this notation, a sequence I has no 2-gaps if Ag(/) # 0 and if
Aey1(I) # 0 implies Ag(I) # 0.

A stronger version of the theorem is that the sequences s(I) with no
92-gaps, together with s(1,...,1), generates F[V]®. The version given
here follows when we note that a sequence of largest degree with no
2-gaps is

(n—1n—2,...,2,1,0).

Let A C F[V]¢ denote the subalgebra generated by all elements s(I)
with no 2-gaps, together with s(1,...,1). We wish to show that, if I
is a sequence with a 2-gap, then s(I) € A. The argument given below
can be used to start the induction, but the details are omitted.

Let r denote the largest 2-gap in I, that is, there is no entry of I
equal to r, but there is at least one entry of I equal to r + 1, and r is
the largest integer with this property. That is, we assume that r is the
largest integer with A.(J) =0 and A.4; # 0.

Let K denote the sequence which has a 1 wherever [ has an entry
bigger than 7 and 0’s elsewhere. Let J = I — K. We observe that
Stabg(J) C Stabg(K), although, to my amazement, we don’t need
this observation.

Consider the product s(J)s(K). We observe that the exponent se-
quences which arise in this product are of the form o(J) + 7(K). We
show that s(I) occurs with coefficient 1 in the product and, simulta-

neously, that o(J) + 7(K) is smaller than I in our order, provided
11



o(J) + 7(K) ¢ Og(I). Suppose then, that I = o(J) + 7(K), for some
o, and 7€ G C By

Now I has largest entries k in certain places, and therefore o(J)
must have entries k£ — 1 in those same places, and 7(X) must have 1’s
in those same places, or o(J) + 7(K) will be smaller than I in our
order. The same argument also applies in turn to those places where
I has entries k — 1,...,7 + 1. But our argument shows that o(J) = J
and 7(K) = K, but this cannot happen for non-trivial o and 7. &

The Dickson Invariants. Suppose F is a finite field of order
g = p°. Then consider G = GI(V). Then any vector v € V*\ {0} has
Og(v) = V*\ {0}. Now we obtain

Pot)= [I t-w) =) (-D)"dint™".

weDg(v) =0

The d;, are known as the Dickson invariants, and they enjoy many
beautiful properties.
For example, when p = 2 and n = 2 we have

Po(t) = t(t+2)(t+y)(t + 2 +y)

so that dy 2 = 22 + zy + y* and do» = zy(z + y) = 2%y + 7%
Exercise Develop recursive formulae for the Dickson invariants. That
is write d;, in terms of d; ,—; and z,.

For now we note that |d; »| = ¢"—¢"~*. Therefore, we have [[}., |d; »| =
| GL(V)].

This latter calculation is very pretty. There are g™ vectors in V, and
any one of them may be identified with the first row of a matrix in
Gl(V) excepting the zero vector. Hence there are ¢" — 1 choices for the
first row. Similarly, the second row corresponds to vectors in V' that
are linearly independent of the first, and there are ¢ — g choices for
these. And so on.

Exercise Prove that {d , ..., d,} are algebraically independent. Carry
on with an argument similar to the one given for the symmetric groups
to show that Fldin, ..., dn.] = F[V]C.

Upper Triangular Invariants. Suppose F, is a finite field of
order ¢ = p°. Consider G = U,(F,), the group of upper triangular
matrices with 1’s along the diagonal acting on V* with respect to the
basis {z1,...,2,}. Note that Og(z;) = z; + V;_; where V,_; denotes

the subspace of V* with basis {z1,...,z;_1}. Therefore, we define
h; = H (z: +v).
veVi—y
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Note that the degree of h; is ¢"~!. Therefore, Hz—l |hi| = |Un(F)|.
When p = 2, we get by = 7, he = y(y + z) = y* + zy. For arbitrary

p, we have hy = [[ o5, (v + ax) = 3° — P 1y.

Exercise Carry on with an argument similar to the one just given to

show that Fylha,. .., hs] = Fg[V]C.

Exercise Prove that U, (F,) is a g-Sylow subgroup of Gl,(Fy).

A 2-dimensional representation of Cs, p = 2, [B, pg 103.]
Suppose G acts on V* = (z,y) by

{hog=13 11

over the field F,. Note that |G| = 3, and, in our conventions, ¢ acting
on Fy[V] = Fa[z, y] sends z to y and sends y to z + y.

It is straightforward to calculate the ring of 1nvar1ants for G Flrst
we observe that the Dickson invariants r = 2 + :cy +12, 5 = 2%y + zy°
form, as always, a homogeneous system for ]FQ[ 744 Second we observe
that G has index 2 in Gly(FF3), and that t = z° + 22y + ¢® is invariant.
It isn’t hard to see using Galois theory that

Fa[z, 9]¢ = Foz? + zy + o2, 2%y + oy, 2° + 2y + 4%,

and, therefore, this ring is a hypersurface. As part of this calculation,
we note t2 = r3 + s% + rs.

Therefore, we obtain a resolution over the ring A = Fa[a, b, ] with
la| =2, |b| = |¢| = 3, and p(a) = 2* + zy + %, p(b) = 2’y + 217,
p(c) = z% + 2%y + y®. We obtain

0 — A(P +a® + b2+ be) = A — Fofz,9]¢ — 0.

It follows that
1+1% 4+

P(F[V]C,t) = TS

4. LECTURE ON STRUCTURES AND FUNDAMENTAL (QUESTIONS.

There are two sorts of problems to be considered

(1) Find generators for F[V]¢. Failing that, find a bound for the
degrees of a generating set.

(2) Determine the structure of F[V]¢. For example, determine for
which groups G is F[V]€ a polynomial algebra, a hypersurface,
Gorenstein or Cohen-Macaulay?

13



Both questions are interesting for either specific groups, or for classes
of groups. In general, much more is known when p = 0 and in the non-
modular case than in the modular case. These differences are the focus
of this lecture.

Bounds for Generating Sets. Noether showed that generators
of degree at most |G| are required when p = 0. For non-modular groups
with p > |G|, this theorem is still true. Richman, Smith and others have
shown Noether’s original bound, |G|, applies if G is solvable. Smith
[S(a), pg 175], Fleischmann [F1], and others have shown that for non-
modular groups F[V]€ is generated in degrees at most dimg(V)(|G|—1),
see also [FL]. Here I need dimg(V) > 1 and |G| > 1.

Up until last fall, it was a conjecture that non-modular groups have
rings of invariants that are generated in degrees less than or equal |G|.
The difference between the known bound and this conjectural bound
was known as the problem of Noether’s Gap: is there a non-modular
group in the gap or not? In the fall of 1999, Peter Fleischmann gave
a beautiful and clever variation of Noether’s original argument that
showed the conjecture was true (see below). Independently, Fogarty
proved the same result.

It is proved in [2] that if F,[V]€ is a hypersurface, then this ring is
generated in degrees less than |G| while if F,[V]¢ is Gorenstein, then
the bound dimg,(V)(|G| — 1) applies. More generally, Broer [Br] has
shown that this latter bound applies if F,[V]¢ is Cohen-Macaulay.

Kemper conjectures that Noether’s bound, |G|, applies whenever
F[V]€ is Cohen-Macaulay.

Dade has shown that there exists a homogeneous system of parame-
ters all of whose generators may be taken to be either from V¢ or of de-
gree |G|. This may involve a finite extension of the original field. Then
dimp(V/VC)(|G| — 1) is the degree of a top module generator of F[V]C
over this homogeneous system of parameters. In general, one would
expect to find algebra generators in degrees somewhat less than this.
However, there are examples where the bound dimy(V/VE)(|G| - 1) is
sharp (see below).

There is no explicit bound for modular groups known. It is easy to
see that there is a bound that depends on dimg(V') and g, for G1,(F,)
is a finite group, hence has finitely many subgroups, hence there are
finitely many rings of invariants to be calculated, for any given n and

q.
14



Fleischmann on non-modular groups. Suppose G = {g1,- -,k }
is a non-modular group. Consider the vector space Z with basis

z|1<i<n, 1<j <k}
J

together with the map p : Z — V defined by p(z;;) = g;z:. We extend
to a map

F[Z] — F[V].
Note that G acts on Z by permuting the columns of the matrix z;;
in the obvious way, via the regular representation of G. This is the
original construction of Emmy Noether.

We obtain p : F[Z]®* — F[V]®. For f € F[V] we may define
a,j(le, sttty an) = f(zlj, . ,an), with p(aj) = gjf(:cl, o ,.’En). There-
fore, if f € F[V]® we have £+p(3" a;) = f. Further, }_a; is the orbit
sum of a; over L.

Fleischmann’s proof works as follows.

First, note that a; is concentrated in a single “row” of the matrix
Ziq.

JHe shows that the orbit sums of such row polynomials may be written
as sums of products of the form ab where a is in F[Z]®*, has positive
degree, and is a product of invariants of degree less than or equal to %,
and b is in F[Z].

Therefore, f € F[V]® may be written as a sum of terms of the form
ab where a € F[V]% has positive degree, is a product of invariants of
degree less than or equal to k, and b € F[V].

But 1 Tre(f) = LS gi(f) = £, for f € F[V]C. Applying the trace
to each of the terms ab gives the result.

Vector Invariants. Consider the coordinate ring of mV = V&™
with the diagonal action of G. The ring FimV]€ is called the ring of
vector invariants of G, a terminology used by Weyl. Rings of vector
invariants provide an important class of examples and counterexamples.

Hughes and I in [6] give generators, as conjectured by Richman [R],
for F,[mV]% where C, denotes the cyclic group of order p, and V' de-
notes its 2-dimensional indecomposable representation. An easy corol-
lary is the fact, first observed by Richman, that this invariant ring
requires a generator of degree m(p — 1). Therefore, Noether’s bound
does not hold for p-groups, and the bound dimg, (V/V®)(|G| — 1) is
sharp in this example.

If G is a pgroup and m > 3 then F,[mV] cannot be Cohen-
Macaulay, see [2]. Kemper has proved that, if G is any modular group,
then F,[mV]€ is not Cohen-Macaulay for all sufficiently large m. We

know of no examples where “sufficiently large” is bigger than 3.
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As an example of the kind of argument used here, consider F,[3V;] =
Fplz1, y1, 22, Y2, 3, ys) With an action of o(z;) = z; and (y;) = ¥ + ;.
We note that u;; = |y 3 | = z:y; — z;¥; is invariant. Further, we have
that the matrix

Ty Tz I3
Ty T2 I3
Y1 Y2 Ys

has zero determinant, since two rows are equal, and, on the other hand,
is equal to iUz — Touiz + T3u19. At Queen’s, we call this the equation
of the three amigos, and with a little work, it can be used to show that
the ring in question is not Cohen-Macaulay. Generalizations of it are
used in the papers listed above.

If we consider now Fp[mVa] = Fplz;,y; | 1 <4 < m] with the action
of C, described above, then we find, after a great deal of hard work (see
[6]), that Fp[mVy] = Fplas, N(v:), wi, Te(m) | m|(y1-- - ym)P~*]. Of
course, this ring is far from Cohen-Macaulay, but at least this collection
of invariants appears to be understandable.

Kemper has also proved that, if G is a p-group and F,[V]¢ is Cohen-
Macaulay, then G is generated by elements that fix a subspace of
codimension at most 2 (such elements are known as bi-reflections).
This theorem shows us how rarely we may expect to encounter Cohen-
Macaulay rings as the invariants of p-groups.

On the Structure of F[V]®: classical results. The invariant
theory of finite groups is much better understood in the non-modular
case.

For example, in this situation, it is a famous and beautiful theo-
rem that F[V]% is a polynomial algebra if and only if G is generated
by pseudo-reflections (Shephard-Todd, Chevalley, Serre, Clark-Ewing,
Steinberg, Kane).

There are other beautiful and wonderful theorems concerning char-
acterizations of hyper-surfaces (Nakajima), Gorenstein (Watanabe), or
Cohen-Macaulay (Hochster and Eagon) in the non-modular case.

Structure of F[V]®: modular case. It is known (Serre) that
groups with polynomial rings of invariants must be pseudo-reflection
groups, and many groups are known to have polynomial rings of in-
variants — the symmetric groups, and the parabolic groups.

Nakajima has characterized those p-groups with polynomial rings of
invariants when F = FF,. Roughly speaking, he shows that such groups

resemble the ring of invariants of the Upper Triangular group, the last
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example of section 3. He gave examples of elementary Abelian reflec-
tion p-groups with non-Cohen-Macaulay invariant rings, a somewhat
simpler example is given below. Nakajima’s characterization fails over
larger fields, as shown by an example due to Stong, see below.

Roughly speaking, Nakajima’s characterization is as follows. Let G
be a p-group represented over the finite field F, on a vector space, V,of
dimension n. Since U, (F,) is a p-Sylow subgroup of Gl,(F,), we may
find a basis for V with respect to which G is a subgroup of Up(Fp).
The theorem asserts that ]FP[V]G is a polynomial algebra if and only
if there is a (upper triangular) basis {zi,...,2,} of V with respect
to which G “stands up straight”, that is, for each generating pseudo-
reflection of G, there is a basis element of V, say z;, such that o fixes
the hyperplane spanned by zi,...,%s, ... ,Zn, where &; indicates z; has
been deleted. Then we have that o(z;) = z; + v where v is a vector
in the span of z1,...,z;_;. The implication < is easy, but the other
direction is much harder.

Kemper and Malle have examined the class of irreducible representa-
tions of modular pseudo-reflection groups and determined which have
polynomial rings of invariant. Unfortunately, irreducible representa-
tions are few and far between.

Much work remains to be done on characterizing groups with poly-
nomial rings of invariants.

A cautionary tale concerning p-groups. Consider the group

& Ty

G={

o =22 4+

0 Y
1 +
0 ﬁDFy | a, B, v€Fp}
0 1

OO

Our convention is that G acts on V* with basis {21, Z2, %1, y2} with z;

and z, as fixed points. Then G has order p®. Let H be the subgroup of

G of order p? determined by the elements with v = 0. Both G and H, of

course, are elementary Abelian groups generated by pseudo-reflections

(elements that fix a hyperplane). However, only H is a Nakajima group.
Let N;(v:) = v — xf_lyi for 1 <4 < 2. It isn’t hard to see that

IFP[V]H = Fp[xla T2, N(yl):' N(y2)]

Further, since H is normal in G, we have an action of G/H = C, on
F,[V]H.
We let
17



o e B e I
oo =O
O =
= O

and we calculate o(N1(y1)) = Ni(y1)—N1(z2), and o (No(y2) = Na(yz)—
Ny(z,). From here we can construct three new invariants:

Ni(y1)? — Ni(z2)? " N1 (1),

No(ya)? — Na(z1)P~  Na(y2)
and

Ni(z9) Na(y2) — Na(z1) N1 (ys).

It can be shown without a great deal of difficulty that F,[V] is the
hypersurface generated by these three invariants together with z; and
Is.

Stong’s example. We work over the field F, with ¢ = p®. We
may suppose the field has basis over F, consisting of {1,w, u}. Let H
be the group generated by the matrices

(

and let G be the group generated by H and the matrix

with respect to the basis {z, y, 2} of V*. We note that both groups are
generated by psuedo-reflections, but that G is not a “Nakajima” group,
since we cannot choose a basis with respect to which each generating
pseudo-reflection is concentrated in a single column.

It is not hard to see that F,[V]¥ = F,[z, N(y), N(z)], where N(t) =
tP — zP~1t. We calculate o(N(y)) = N(y) — (w? —w)z?, and o(N(z)) =
N(z) — (#? — p)p. From here we can construct two G invariants f; =
(47~ )N (y) ~ (WP~ w)N(z) and f, = N(y)P - (wP —w) D (y)z26~D).
It isn’t hard to see that these form a homogeneous system of parame-
ters, and that F[V] = F,[z, f1, fo]

0
0} and
1

OO
O =
oo
o= O
=

o O =

w
1
0

=~
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5. LECTURE ON THE CYCLIC GROUP OF ORDER p OVER F,

There are p indecomposable representations of C, over Fp, one of
dimension n for each n less than or equal p. We have a tower V3 C
Vo C --- C V,, and the matrix of the generator for V; may be taken to
be the n X n matrix

1 10 .00
0 11 .00
0 01 .00
T=le 2 7 &, 31 =
000 ... 11

00O0..0°1

It isn’t hard to compute the rings of invariants associated to the
three lowest dimensional representations. The first two are polynomial
on “top” Chern classes of the basis elements (use the basis assumed
above) and the third is a hypersurface. Shank [Sh]| has given alge-
bra generators for the rings of invariants associated to the four and
five dimensional representations. Also, using techniques and results
of Almqgvist and Fossum, it can be shown that any representation V'
of C, has its invariant ring generated in degrees less than or equal
dimg, (V)(p — 1). Kemper and Hughes have a very nice paper about
this.

We conjecture that the rings of invariants of all representations of
C, are generated by elements we call norms, traces and rational invari-
ants. This latter class of invariants is obtained from certain classical
invariants of binary forms studied by Hilbert and others working in the
last century. We must show that the invariants of degree less than p
are either traces or rational invariants. While this result seems to be
in reach, we haven’t yet proved it.

Conjectures about Modular Groups. Do norms, traces and
rational invariants form a generating set for the invariant rings of all
p-groups? Well, there are cohomology classes as well. I hope to say
something about this at the end of the lecture.

I (and many others!) conjecture that modular groups are generated
in degrees less than or equal to

dime, (V/VE)(IG| - 1).

Of course, this bound is known to hold in all known examples, provided,
of course, that dimg, (V) > 1 and |G| > 1.
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Generators for p-Groups? Take N to be a normal subgroup of a
p-group G with quotient group G/N =~ C,. Then F,[V]¢ = (F,[V]")¢*
Suppose that we know F,[V]Y = F,[fi,-. ., f], perhaps by induction.
Let A =Fp[z,..., 2, mapping onto F,[V]" by the rule z; — f;, with
kernel the ideal I. Suppose that C, acts on A. This need not happen,
and there may be a paper subsequent to this one in which this issue is
explored.
Write A = 1 — o and Tr = 577 0 where o a generator of C,.
Because Tr = AP~!, we obtain a resolution of F, as the trivial module
over the group ring F,C, as follows:

o O S B G 5 B@, s te B0 = Bl W

where € : F,C, — F,, is defined by €(3"77) a;o?) = 307 as.
Then we have exact sequences of Cp-modules

01 — A = F[VIVN = 0
U U U
0— ICP — ACP — F [V]G—> Hl(cp,I) = HI(CIHA) -

Hence the problem of determining elements of F,,[V]¢ not determined
by A% amounts to understanding the right-hand side of the long ex-
act sequence above. Of course, because of the periodic nature of the
resolution of F,, we have

H(C,, M) = Kernel(M -2 M) = M%
Kernel(M =5 M)

HY(Cp, M) =
‘ Im(M -2 M)
= HOdd(Cp, M)
A
HY(C,, M) = Kernel(MT—> M)
Im(M — M)

— Heven(crp, M)

Now the cohomology of Cp-modules is well understood. In partic-
ular, let’s try and understand H*(C,,V,) for V, an indecomposable
representation of C;. Let us denote a basis for V! by {3, ...,z,} and
note that A(z;) = z;—; for 1 < ¢ < n, A(x;) = 0, and, therefore, that
Tr(z;) = 0 for 1 <4 < p, and Tx(z,) = z;.

We have that z; € Im(A) for 1 < ¢ < n. Further, we have Im(Tr) = 0
for n < p and Im(Tr) =< 2; >, for n = p. Finally, H(C,, V;) = V% =
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F,, on the cohomology class associated to z;. Putting all of this together
we obtain

I O(Cp, V) = Fp, on the class associated to z;
HYCp, Vp) = 0= H*(Cp, V)
HY(C,,V,) =F,, n <p, on the class associated to z,,

In our situation we must first understand the decomposition of (each
graded piece of ) I and A into Cp-modules, study the effect of mapping
from one to other, and find the kernel of the induced mapping.

Shank and Wehlau have a recent preprint [SW(b)] in which they
make use of this technology to prove the following. Suppose U is a
sub-module of the Cp-module V. Suppose F,[V] is generated in degrees
less than or equal 7. Then F,[U] is generated in degrees less than or
equal 7. They further obtain a lower bound for 7.

6. Two PROBLEMS FROM INVARIANT THEORY.

The Dixmier-Erdos-Nicholas Problem. Let C, be the cyclic
group of order n over a field with a primitive n-th root of unity w. The
generator o of the group with respect to the natural basis given by z;
corresponding to ¢ has the form

000...01
100...00
s—]010...00

B0 el O
Of course, C,, can be diagonalized, that is, there is a basis

{yi:)yyl; coa :yn—l}

with respect to which o is diagonal of the form
o =diag(l,w,w?,...,w"").
We note immediately that 3} will be an invariant polynomial for all
1 > 0 and so we will work with the reduced regular representation,
that is, we will take the vector space V with basis {y1,...,Yn-1}-
The computation of F[V]°" is connected with problems in the repre-
sentation theory of Lie groups of type A,, and with problems in graph

theory. We proceed as follows.
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We note that o(y!) = wh et +(=Din-191 g6 that the group maps
monomials to monomials. It follows that invariant polynomials consist
of sums of invariant monomials. Writing 8 = (1,2,...,n — 1) we see
that y! is invariant if and only if

6-I=14 4234+ (n—1)in—1 = m(I)n,

for some m(I) € N. We refer to m(I) as the multiplicity of I. We let
M denote the collection of generating monomials, or rather, by abuse
of notation, their exponent sequences. We denote by A; the exponent
sequence which consists of 0’s everywhere except for a 1 in the i-th
position. It is easy to see that the sequences nA; are generators, and,
in fact, the associated monomials form a homogeneous system for the
ring of invariants. It follows that, if / € M, and I is not one of the
nA\;, then each entry in I is less than n.

We are interested in the problem of characterizing elements of M,
or in counting their number, denoted here f(n). We've labeled the
problem in the way we do because of a theorem due to Dixmier -Erdos-
Nicholas, which says,

Theorem.

lim inf f(n)
oo /np(n)

log nloglog(n) > 0.

Here p(n) denotes the number of partitions of n. This theorem points
to a phenomenonal growth in the number of generators for these rings
of invariants as n grows.

One view is that the equation above takes place in N*~1 ¢ Z*! ¢
R™1. If you prefer, we are studying an action of C,, on these three sets.
Of course, we can interpret the action on Z"~! as associated to the ring
of Laurent polynomials. To continue, in Euclidean space, the equation
defines the hyperplane of multiplicity m. We can find a integral basis
for the multiplicity 0 hyperplane, the hyperplane through the origin.
And then any of the multiplicity planes can be obtained by identifying
Jjust one integer vector in them, and using the basis above. We haven’t
been able to characterize the generators of our ring in this manner,
though.

Special cases related to these sorts of invariants can be found in [3,
4, 11].

Steenrod module structures on the syzygies. First, we’ll re-
strict our attention to the case p = 2. I'll try to illustrate with examples
an interesting situation. Let V be a vector space of dimension 2 over
the field Fy. Let G = C3 be the subgroup of Gl(F5) generated by the
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matrix ¢ = (91). The group G has order 3, and we described the ring
of invariants at the end of the section on examples.
We recall
IFZ [l‘a y]G = IF2 [a‘a b: C]
where
— 2 2
a=z"+zxy+y,
b=z®+ 2y +12, and
¢ =z + zy? + 9%, with relation
a3 = b2+ be+ &,

together with its resolution by syzygies over the ring A = [, [a, b, c].
Here |a| = 2, |b| = |¢| = 3, and p(a) = 2° + zy + %, p(b) = 2°y + z°,
p(c) = 23 + 2%y + y*. We also had

0 — A( + a® + b + bc) — A — Fyz,y]° — 0.

We will refer to the relation by the name d.
Here is a table of Steenrod operations on A which we write down
after considering the corresponding operations on F5[V].

Sql qu SqS
a b a? 0
b 0 ab b?
¢ a? ab+acc?+d

We won’t go into the details here, but there is a proposition which
states that if the Adem relations are satisfied on the generators of an
algebra, and the action of the operations on products are given by the
Cartan formula, then we obtain an action of the Steenrod algebra on
the algebra. There are more sophisticated versions, but, for now, let’s
just point out that it is enough to determine S¢*(f) for 0 < 7 < |f| for
each generator f of the algebra in question, and then verify 27l Adem
relations on f, beginning with Sg?#1-1Sglfl(f) = 0 and working our
way down to Sq'Sq¢'(f) = 0.

In our example, because of the Adem relation Sq*S¢? = Sq®, we can
calculate Sqg*(c). However, we note that Sg°(c) # ¢?, so that A is not a
A-algebra, but rather a .A-module. We need to check that S¢3S¢? = 0,
Sq2Sq¢® = S¢®Sq'. It is straightforward to observe that the .A4-action
preserves the ideal generated by d.

Here is another example. Let A = Fyz,y]/(zy® + z°) with A action
given by S¢*(z) = zy, and S¢*(y) = y%. It is trivial that S¢*Sq¢*(y) =0,
and we obtain Sq'Sq*(z) = Sq*(zy) = zy?+z3 = 0. These are the only
Adem relations we need check, and therefore A carries the structure of
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a A-module. However, it is fairly easy to see that the “natural” (from a
certain point of view) algebra B = Fs[z, y] doesn’t admit a compatible
action of 4. In particular, there is no possible modification of our
definition Sq¢'(z) = zy. Therefore we obtain Sq¢'Sq*(z) = zy? + z°
which is not 0 in B. Therefore, of course, B is not an .4-module, and
can’t be made to carry such a structure, given that the ideal (through
which our choices might be modified) doesn’t begin until degree 3. Of
course, we might seek to modify B, but this is a story for another day.

There is much more to be said about even these two examples, and
in the verification of the underlying theorems producing A actions, but
these need await another time. We've computed a number of different
examples, which we hope to analyze in more detail.
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FREDERICK R. COHEN®

ABSTRACT. One of the main themes of this conference addresses invariants, as
well as their connection to endomorphisms of functors. These endomorphisms
yield useful techniques for the analysis of certain natural problems in the subject.

At this point there is a dichotomy: Smith’s lectures focus on functors which re-
flect "abelian properties” of an object in Algebraic Topology while Cohen’s lectures
focus on functors which reflect "non-abelian properties” in Algebraic Topology.
Part of the role, and applications of these structures for classical homotopy groups
will be addressed in these lectures. The four topics considered are as follows:

Splittings of spaces,

Endomorphisms of tensor algebras, and self-maps of loop spaces,
Braid groups, and homotopy groups of the 2-sphere, and
Cohomology of symmetric groups, and other groups.

Ll R

I would like to thank Nondas Kechagias as well as the University of Ioannina for
providing an extremely pleasant, and enjoyable atmosphere for this interesting, and
fertile conference. I would also like to thank Larry Smith for his useful suggestions.

1. SPLITTINGS OF SPACES

The basic objects of study here are loop spaces, and suspension spaces. One goal is to
obtain information about the homotopy groups, and homology groups of these spaces.
These constructions also provide a natural continuation of the themes in Professor
Smith’s lectures in which he discusses classifying spaces.

For example, Milnor [20] showed that the loop space of a path-connected simplicial
complex X has the homotopy type of a topological group G, and where BG has the
homotopy type of X. This construction will be used below.

Principle: Many useful spaces are homotopy equivalent to a classifying space. This
feature has informative consequences as illustrated below.

Theorem 1.1. Let X be a topological space which is a connected CW-complex. Then
there ezists a topological group G such that X is homotopy equivalent to BG.

Next consider the path loop fibration
QX - PX - X

where PX denotes the path-space, the space of continuous functions {f : [0,1] —
X|f(0) = %}, and X is the subspace of PX given by

{£:00,1] = X|f(0) === f(1)}.

iPartially supported by the National Science Foundation.
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Classically, there are isomorphisms
ﬂ'i(X) — Mi—-1 (QX)

Thus the study of the homotopy groups of a simply-connected space reduces to those for
its’ loop space. The point of view of these lectures is to regard X as a classifying space,
and to learn properties about X from the loop space of X. Many of these properties
are described in [30].

There are sometimes useful, and informative features of QX which then inform on
X. It will be seen below that certain choices of invariant elements under the action of
a symmetric group yield additional information about 2X. Thus to continue a second
theme in Professor Smith’s lectures of invariant elements arising from natural actions
of groups, the symmetric groups are used to give decompositions of certain loop spaces
which arise from such invariants.

The first example in this context arises from the classical Hopf fibrations: There are
homotopy equivalences

1. 0182 = 5lx Q8%
2. Q8% - S xQS7,and
3. Q8% - §7 x QS'5,

These decompositions represent reformulations of the classical Hopf invariant one
problem, and are the the only cases for which such product decompositions for loop
spaces of spheres exist. That these are the only spheres S™®*! such that QS"*! is
homotopy equivalent to S™ x Q52"*! is equivalent to the classical result on the non-
existence of elements of Hopf invariant one.

However, after localization away from 2, there are homotopy equivalences
QSZn - SZn—l x Qs‘m—l

given by classical results due to Serre. These decompositions will be reformulated
below in terms of invariants of actions for certain symmetric groups. A general context
together with applications to other natural spaces are given as well.

One method of proof here is as follows. Start with a principle G-bundle with a
cross-section. It is a classical fact that such bundles are trivial. This method provides
a process for showing that a loop space of X is sometimes homotopy equivalent to a
product.

Proposition 1.2. Let E — B be a fibration with homotopy theoretic fibre F'. Assume
that the natural map i : F — E admits a cross-section up to homotopy ( thus there
is a map o : E — F such that io o is homotopic to the identity ). Then there is a
homotopy equivalence

F— ExQB.

As an example, consider the natural homomorphisms S — S° to obtain a fibration
BS! — BS? with fibre §2. "Backing up” this fibration, there is an induced fibration
Q5% — S with homotopy theoretic fibre 253. Since there is a section for this last
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fibration, the product decomposition 252 — S* x Q5° follows at once. This gives the
product decomposition for 252 listed above. The other cases are similar.

Other important constructions which fit in this framework are the Whitehead prod-
uct, and the Samelson product. Here consider a topological group G. The commutator
map

[--]1:GxG—= G
is gotten by sending the ordered pair (a, b) to the commutator [a, b]= a~b~'ab. Notice
that if either a or b is equal to 1, then the commutator [a, b] is equal to 1. There is an
induced map
S:GAG— G

where G A H denotes the quotient G x H/(G x {1} U {1} x H).

Notice that S* A §® = S"**. There is an induced bilinear map for all i,7 > 1 on
the level of homotopy groups

Sy : G @G — ?Tj+kG.

Regarding QX as a topological group G, there are analogous pairings induced on the
level of homotopy groups for any simply-connected CW complex X. These pairings
satisfy the (graded) antisymmetry law for a Lie bracket if the prime 2 is a unit, as
well as the (graded) Jacobi identity if 3 is a unit. In the case of graded Lie algebras
over Fy, the element [z, z] is required to be zero, and over Fs, the element [[z, z], z] is
required to be zero. These last two properties fail in general for the Samelson product
S, without additional assumptions. In case z is of even degree, it is the case that [z, z]
is sometimes non-zero, and is of order 2. In case z is of odd degree, it is the case that
[[z, z], ] is sometimes non-zero, and is of order 3.

This pairing S. is known as the Samelson product [26]. This pairing is related
to the classical Whitehead product W by adjointness up to a sign, and gives the
following commutative diagram where o : g1 X — 70X is the adjoint yielding a
natural isomorphism, and the pairing [z,y] in the homology of QX is given by z®y —
(_l)degree(:c)degree(y),y @z [6], page 215:

w
Tp1X @ Tgp1 X —— Tppqp1 X

aga | a|

10X @ TQX —2 Mpy X

! !

HOX 9 H,0xX =7 1, 0x

These constructions give rise to product decompositions of loop spaces in much the
same way that elements of Hopf invariant one give rise to product decompositions
above. This feature will be seen after the next example for which a product decompo-
sition of a loop space arises from work of T. Ganea, and P. Hilton, and others.

Here consider the inclusion of the wedge X VY in the product X x ¥ with homotopy
theoretic fibre F. Let X*) denote the k-fold smash product where X A'Y denotes
X xY/X VY. The following is a theorem of T. Ganea [14].
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Theorem 1.3. Let X, and Y be connected CW complezes, with the homotopy theoretic
fibre of the natural inclusion X VY in X x Y denoted by F. Then

1. F is homotopy equivalent to the (X A QY).
2. There is a homotopy equivalence

Q(X) x QY) x QB(QX AQY) - QX VY).

3. Furthermore, the choice of map QE(QX AQY) — QX VYY) is the canonical
maultiplicative extension of the composition of the map

QEAQ) UX)AQUY) > UAXVY)AQX VYY),
with the commutator map
S:UXVYIAQUXVY)— QX VY)
wherei: X - XVY,andj:Y — X VY are given by the natural inclusions.

Thus for example, if X and Y are CP*°, then X, and ¥ have precisely one non-
vanishing homotopy group. Since QCP® is homotopy equivalent to S*, the theorem
implies a homotopy equivalence

Q(CP* vCP>®) —» S'x 8! x Q83

Thus the homotopy groups of CP* V CP* are those of the 3-sphere plus 2 other copies
of the integers ( in degree 2). However, the spaces CP* V CP*, and S° x CP> x CP>®
are not homotopy equivalent.

The next theorem is the classical Hilton-Milnor theorem in which the notation X (¥)
is used for the k-fold smash product as above.

Theorem 1.4. Let X, and Y be connected CW complezes. Then there is a homotopy
equivalence

QS(X VIY) — QB(X) x Q(Y) x QX (Vi j51 XD A YD),

How do these "fit” with invariants ? How do they arise in some further way ? What
are these good for 7 Some of these questions will be addressed next. Two examples for
which product decompositions have proven to be useful are listed next.

1. Product decompositions for the loop space of a mod — p™ Moore space for p prime
have useful applications. These decompositions impinge on the structure of the
homotopy groups of spheres as well as other finite complexes.

2. More general splittings will be illustrated where spaces are localized at a fixed
prime. For example, consider spaces X which are (1) double suspensions, and (2)
their homology groups are non-trivial, and entirely torsion. Then the loop space
of X admits a product decomposition with infinitely many non-trivial factors.
These decompositions then directly give non-trivial elements in homotopy groups.

In what follows below, it will be assumed that the reduced homology of the spaces
below are entirely torsion.

There are natural self-maps of X(*) given by elements in the symmetric group on k
letters £x. Thus, there is an action” of the integral group ring Z[Z]Jon £X *) given
by adding via the suspension coordinate. These self-maps have been used widely to
give decompositions of X (%), Some examples are listed below.
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Example 1.5. Example: Let k = 2, and let G» denote the element in the group ring
given by 1 — (1,2) where (1,2) is the transposition which interchanges 1, and 2. Then
a direct computation gives (32)? = 203s.

Furthermore, if 2 is a unit in the reduced homology of X, then the elements (s, and
2 — B, give an orthogonal decomposition of the homology of X (2), In addition, if 2 is
unit in the reduced integer homology of XX (), then there is a homotopy equivalence

2X@ & L, v M,

where L» denotes the homotopy direct limit of 32, and M denotes the homotopy direct
limit of 2 — Bs. This example is expanded below.

The Dynkin-Specht-Wever elements [, are elements in the integral group ring of
the symmetric group Z[Z,], which can be defined as follows: Regard the n-fold tensor
product V®” as a module over Z[Z,]. Then (8, in Z[X,] is obtained by the linear
transformation which sends v; ® v» ® - - ®vy, to the element [[-[v1, v2]vs] - ~-|vn] Where
the bracket [z,y] means z @ y — (—1)29x)d00)y @ 7.

For simplicity, assume that a space Y is a suspension £X. There are induced self-
maps B, n— B : (EX)™ — (ZX)™. Let L,(EX) denote the homotopy direct limit
of 3, and M,(ZX) the homotopy direct limit of n — Sx.

Proposition 1.6. 1. The formula 8,08, =nfy holds in homology for the self-maps
&, : (B s (EX)),
2. If n is a unit in the reduced homology of X, then there is map which induces a
homology isomorphism (ZX)™ — L, (ZX)V M,(ZX).

The proof is that singular homology commutes with the direct limit construction
here, and that the maps are isomorphisms in homology with any field coefficients. The
proof is a special case of what follows below. These constructions were given in work
of the author, and J. Wu, and have been developed further in recent work of P. Selick,
and J. Wu.

Namely, let g : ¥ — V be an idempotent self-map of a vector space V. Thus ? =g,
and so g, and 1— g give an orthogonal idempotents of V, and there is an isomorphism of
vector spaces V — gV@(1—g)V. Notice that there is an isomorphism gV — injlim, V.
This proof has a topological analogue.

Proposition 1.7. Let f : X — XX be any map which is idempotent on the level of
reduced homology groups. Then there is a map

X — AVB
which induces an isomorphism on homology where
1. A=injlim;¥X, and
2. B =injlim;_,¥X
Thus if X has the homotopy type of a CW-complez, the map © is a homotopy equiva-
lence.

This basic idea has been exploited in many beautiful ways by G. Cooke, N. Kuhn, S.
Mitchell, G. Nishida, N. Ray, J. Smith, L. Smith, and R. Wood as well as many others.
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The main point here is that invariants in linear algebra give topological information by
exhibiting coalgebra decompositions of tensor algebras which can then be realized by
topological spaces. Using this principle, the following theorem was proven in [8].

Theorem 1.8. Fiz a prime p, and assume that n is unit in the reduced mod-p homology
of a CW-complex X. Then there is a homotopy equivalence
Q22X — Q¥iL,(X) x B(X)

for some choice of space B(X). In addition, the mod-p homology of L, (X) is isomor-
phic to the module of Lie elements of tensor weight n in the tensor algebra T[V] where
V is the reduced mod-p homology of X . Thus if the reduced mod-p of X has at least
two linearly independent elements, then L,(X) has non-trivial homology for every n
prime to p.

A specific example of the above theorem where X is a 2-cell complex given by a
mod-2 Moore space is described below. A sketch of the proof of this theorem is given
before this example as follows:

1. The Samelson product yields a map Y(® o Q%Y.
2. Specialize to ¥ = £X and appeal to Proposition 1.6 to obtain a map L, (XX) —
QXYY with canonical multiplicative extension

QZL,(EX) — QY.
3. The Hopf{ invariant construction discussed in the next section is a map
QzY - Qzy™),
Again, let ¥ = £X, and use Proposition 1.6 to project QXY () — QXL,(TX).
4. The composite
QZL,(ZX) » QE2X — QLL,(TX)

induces a homology isomorphism by a direct ( messy ) computation. Alterna-
tively, the composite can be shown to be homotopic to a loop map, and the
computation is then direct.

Let P"*1(2) denote =" 'RP? where RP? is the real projective plane. The next
theorem follows by substituting » = 3 or 5 in the previous theorem where P"(2)
denotes the (n-1)-sphere with an n cell attached by a degree 2 map. Thus there is a
homotopy equivalence X"~ 2RP? — P™(2).

Theorem 1.9. Assume that n > 2. Then there are homotopy eguivalences as follows:
QPHOm-2842(9) x X(n+1) fn+1=4m,
QPWBm-2R+2(9) x Y(n+1) ifn+l=4dm+1,
QP#mKE)+2(9) x Z(n + 1) fn+tl=4m+2,
QP4rBm+1k)+2 (2)x W(n+1) ifn+l=4m+3

for all k > 1, where p is defined by

QP™1(2) ~

k-2
p(n, k) =9"1n 4 Z 9.

=0
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It was proven by J. Mukai [23] or in [8] that if n > 4, and n is odd, then my,_2P™(2)
contains Z/8Z.

Proposition 1.10. Ifn > 3, then there are infinitely many elements of order 8 in the
homotopy groups of P™(2).

There are two outstanding conjectures in this subject:

1. Barratt’s finite exponent conjecture: Assume that the suspension order of the
identity for £2X is p". Then p™+! annihilates the homotopy groups of 325 o8

2. Moore’s conjecture: Assume that X is a simply-connected finite complex which
has finitely many non-zero rational homotopy groups 7; X ®Q. Then for any fixed
prime p, the p-torsion in the homotopy groups of X have a bounded exponent for
all i ( depending on p ).

The work above was directed toward considering these questions for mod-2 Moore
spaces, and was inspired by the following two theorems which were proven much earlier
using splitting techniques.

Theorem 1.11. [7] If p is an odd prime, then p™ annihilates the p-torsion in the
homotopy groups of S2"+L,

Theorem 1.12. [25] If p is an odd prime, then p™+! annihilates the homotopy groups
of a simply-connected mod — p” Moore space P"+1(p").

2. ENDOMORPHISMS OF TENSOR ALGEBRAS, AND SELF-MAPS OF LOOP SPACES

In the previous lecture, certain product decompositions for loop spaces arose from
natural coalgebra decompositions of the tensor algebra. This theme will be pursued
here where the collection of all natural transformations with respect to certain analo-
gous structures will be discussed.

Consider a graded free module V over the integers Z or a field F. The modules V'
considered here will usually arise as the reduced homology groups of a path-connected
space X. Thus it will be assumed that V is concentrated in degrees strictly greater
than 0. Let T[V] denote the tensor algebra generated by V.

Then T[V] = ,,5¢ V®". In addition, T[V] inherits the natural structure of a Hopf
algebra by requiring the elements in V' to be primitive, and thus A(v) =v®1+1®wv
for v in V where A denotes the coproduct. Hence, there is a natural diagonal map
which is a morphism of Hopf algebras:

A:T[V]— TIV]®T[V].

Notice that T[V] is a functor from graded modules to graded Hopf algebras. One
might ask for the natural transformations from this functor to itself which preserves
the underlying structure of a coalgebra.

Part of the motivation here is that the tensor algebra T[V] gives the homology of
certain families of topological spaces by the following:
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Theorem 2.1. (Bott-Samelson) Let X be a topological space which is a connected CW-
complex. Assume either that the integer homology is either (1) torsion free, or (2) the
homology groups are taken with field coefficients F. Let V' denote the reduced homology
of X. Then there is an isomorphism of algebras

0:T[V] » H.(QZX).

If in eddition, X is a suspension, then © is an isomorphism of Hopf algebras.

One could ask about self-maps of QXX. The action of such a map in homology
then gives a morphism of coalgebras of T[V]. One could ask further about the ”generic
self~maps”, those maps which are natural for all spaces X, or all modules V.

First notice that the set of coalgebra self-maps of T'[V],
Hom®*9(T[V], T[V])

forms a group where the product of two elements is defined as follows:

T[V] —2— T[V] e T[V]

[P

TV] —— T[V]®T[V]

lid multiplyl

Tv] L2, 1V

The basic point here is that T[V] admits natural self-maps which in fact correspond
to self-maps of spaces. The structure of these then inform on spaces. In addition,
Artin’s braid group arises, and plays a significant role within classical homotopy theory.

Next consider self-maps of T'[V] as follows:

Definition 2.2. Let g be an integer.

1. The map ¢4 : T[V] — T[V] is given by the multiplicative map which sends each
element v to guv.

2. The map 9, : T[V] — T|[V] is given by the ¢ — th power map

3. The map A, : T[V] — T[V] is given by that map induced in homology by the
composite

Q82X — QnEx)™ - onx

of
(a) the g-th Hopf invariant h, : Q52X — QX(ZX)@ with
(b) QE(EX)™ — OX2X, the looping of the g-fold Whitehead product.

These maps all give natural transformations of T[V]. The maps A, : T[V] — T[V]
are non-trivial, and intricate. Let H,., denote the group generated by these elements.

Theorem 2.3. The group Hy, is the inverse limit of a system
sov—> H,— H,_1— --- = Hy— Hj.

The maps H, — H,_; are non-split epimorphisms of groups with kernel given by the
center Lie(n) of H,. Furthermore, Lie(n) is a free abelian group of rank (n — 1)!.
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The algebraic maps above are all realized by self-maps of Q£2X. Thus there is a
group homomorphism from the free group F generated by the elements in Definition
2.2 to the group of homotopy classes of self-maps [2Z?X, QT?X], say

#(X): F — [Q22X,05%X]
together with an induced homomorphism
&: F/Nkerg(X) — [OT2X,Q5%X]

where the intersection is over every space X.

Theorem 2.4. The group Ho, is isomorphic to F/ N ker¢(X). Furthermore Hoo is
isomorphic to the group of natural transformations of the functor T[V] regarded as a
coalgebra.

The self-maps given by H., are those used for the splittings in section 1. This
group was introduced and analyzed by the author. Subsequently, Dwyer, and Rezk
showed that H., exhausts all of the natural transformations of T'[V] which preserve
the underlying coalgebra structure. The groups Lie(n) are given by the homology of
certain braid groups. Namely, the braid groups arise in the next section concerning the
homotopy groups of the 2-sphere in which P, denotes the n-th pure braid group. Then
Lie(n) is isomrphic as a module over the symmetric group to Hy,_1(Ppn;Z) tensored
with the sign representation [6]. The groups H, are also closely connected to low
dimensional topology, and the theory of "Brunnian” links. These connections will be
addressed elsewhere.

3. BRAID GROUPS, AND HOMOTOPY GROUPS OF THE 2-SPHERE

The purpose of this lecture is to outline a specific description of a group of invariant
elements by describing some work of Jie Wu concerning the homotopy groups of the
2-sphere. Namely, let G be a group acting on a set S, and let S€ denote the set
of fixed points under the action of G. The basic example here arises from a classical
representation constructed by E. Artin in 1924 [2, 3, 5] together with recent work of
Wu [31] relating this representation to the homotopy groups of the 2-sphere =,

Artin’s representation is a homomorphism from the n-stranded braid group to the
automorphism group of a free group with n generators in which the following notation
is used:

1. The group B, denotes Artin’s n-stranded braid group.

2. The group P, denotes the pure n-stranded braid group, the subgroup of B, which

leaves the endpoints of a braid unpermuted.

3. The group F,, denotes the free group on n-letters with basis {z1,z2,--- i

4. The groups B,(M), respectively P,(M) denote the n-stranded braid group,

respectively the pure the n-stranded braid group for a surface M. The n-
stranded pure braid group of a surface M, P,(M), is defined as the funda-
mental group of the configuration space F(M,n), the subspace of M™ given by
{(m1,mg,--+ ,mp)|m; # mj,i # j}. The n-stranded braid group of a surface
M, written B,(M) is the fundamental group of the quotient of F(M,n) by the
natural action of the n-th symmetric group F(M,n)/Z,.

Artin’s representation is given by
& : B, — Aut(F,)
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where
1. Artin’s map @ is faithful, and
2. the automorphisms f in the image of & are characterized by the following 2
properties which also characterize the braid group Bj:
(a) f(zy-zo- - zn) =121 -T2+ T, and
(b) f(z:) = w; - To(s) - wi! for all i, and where o denotes an element in the
symmetric group on n-letters.

Next, consider words given by commutators in the free group F;, of the form

["[y11y213y3]: £ '],yt]

where the commutator [a, b] is given by a~1b~1ab, and the y; satisfy the following two
conditions:

1. All of the y; lie in the set
{‘TO‘I L1, T2, ", ‘TTL}

where z¢ is the product =7 - 25 - - - =, arising in Artin’s representation, and
2. there is an equality of sets:

{y11y27y31 o 'yi} — {2:0:-3:1:2:21' e r"f!"ﬂ}'

Define the group W, to be the quotient of F,, modulo the smallest normal sub-
group containing all of the words [...[y1, y2], ¥3), - - - ]y:] as given above. Observe that by
the Hall-Witt identities, the smallest normal subgroup generated by all of the words
[--[y1,%2],y3] - - - Jy:] is invariant under the action of B, acting through Artin’s repre-
sentation. Thus there is a representation

©: B, — Aut(W,)
which descends from Artin’s representation.

Theorem 3.1. (J. Wu)

1. The group of invariant elements W~ is the center of W,,.

2. The group of invariant elements WP~ is the subgroup of the center of W,, gener-
ated by all elements of order 2.

3. For alln > 2, the center of Wy, is isomorphic to mp415% ( = mpe15%).

Thus Artin’s representation together with classical invariants contain the seeds of
the homotopy groups of the 2-sphere. The audience should be cautioned that this
theorem is not useful for direct computations as is traditional in homotopy theory.
The methods of proof involve simplicial groups together with the property that Artin’s
representation descends to an action on certain simplicial groups.

The determination of the fixed set of the action of the braid group on W,, by (com-
binatorial) group theoretic techniques is almost certainly beyond the reach of current
methods. On the other hand, braid groups have appeared in several areas of mathemat-
ics such as group theory, homotopy theory, low dimensional topology, Galois theory,
complexity of algorithms, and mathematical physics. The point is that group theoretic
methods will not inform on computations, but they may admit further applications.
It is the purpose of this lecture to indicate where certain structures "fit” with Wu’s
theorem.
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Since the methods of proof are via simplicial sets, a digression concerning basic
properties of simplicial sets is given now [17, 9]. First of all, a simplicial set S, is
a collection of sets S,, indexed by the non-negative integers n = 0,1,2, ... with face
operations d; : S, — Sp—1 with 0 < ¢ < n, and degeneracy operations s; : Sn — Sn+1
with 0 < j < n. The face, and degeneracy operations are required to satisfy certain
compatibility conditions sometimes called simplicial identities and which are described
next [9, 17].

1. didj = dj..]_d,‘_ for i < j,

2. §i5j = 8j8i—1 for i > 7,

3.
sj-1d: if:¢ <4,
d;s; = 4 identity if i=j or i = j+1, and
sjdsy ifi>5+1,

An example of a simplicial set is the singular simplices of a topological space which
arises in the definition of singular homology for a topological space. A second example
is listed next. The simplicial circle S* has n-simplices S} given by the set of all ordered
(n + 1)-tuples < 0,0, ...,0,1,1,1..,1 >=< 0* " 1 >=z; for 0<i<n+ 1

1. The face operations
d’ﬂ!"' sdn :SEL_> S’}L—l
are specified by the following formulas.
. T
s = {2 HIShT
Ti— ifj>n—i.
2. The degeneracy operations
S0, :Sn:Sfli—} Srl;.—l
are specified by the following formulas.

S(.‘L‘)— *; fj<n—q,
I zig1 i j>n—i

A simplicial group G, is a simplicial set such that

1. the simplices in degree n for every n given by G, is a group, and
2. the face and degeneracy operations are group homomorphisms.

The homotopy groups of a simplicial group were defined by J. C. Moore [22] in a purely
group theoretic way as follows:

1. Let G, be a simplicial group.
2. Define N,, the chains in degree g, as the intersection of the kernels of

di : Gq — Gq_l
for1<i<g,
Nq = ﬂlgiquer(d{: Gq i Gq_l).
3. Define the group of cycles in degree g by
Zg= ﬁggquer(di > Gq — Gq_l).
4. Define the boundaries in degree g by
By = do(Ngt1)-
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5. Then the group B, can be shown to be a normal subgroup of Z;, and the g-th
homotopy group of G, is defined by

7g(Gx) = Zg/By.

Any functor F from the category of pointed sets to the category of groups ” prolongs”
to a functor from the category of simplicial sets to the category of simplicial groups.
Two examples of such functors are given next.

(1) the functor A which sends a pointed set X with ”base-point” p to the free abelian
group generated by X with the single relation that the "base-point” p is the identity
element is denoted A[X].

(2) the functor F which sends a pointed set X with "base-point” p to the free group
generated by X with the single relation that the ”base-point” p is the identity element
is denoted F[X].

An example is as follows. Consider the simplicial set S given above. Then consider
A[S?], and F[S?], the simplicial groups obtained from the functors A4, and F .

It is easy to compute the homotopy groups of A[S]. They are given by {0} in all
degrees not equal to 1, and by Z in degree 1. ( This exercise is fun, and you might try
it.) The case of F[S?] turns out to contain more information.

This free group construction was developed by Milnor [21], and is discussed next
where one technical condition as well as the definition of ”geometric realization” is
required to state the result: a simplicial set S, is said to be "reduced” provided the set
of simplices in degree 0, Sy, is a single point. In addition, there is a functor from the
category of simplicial sets to the category of topological spaces given by ”geometric
realization” where |S| denotes the geometric realization of a simplicial set S. The
realization is defined by

1] = UgzoAlg] x So/R
where Alg] denotes the g-simplex, and "R” is the equivalence relation generated by
1. (v,d;x) is equivalent to (e;(v), z) for v in A[g—1], z in S,, and with ¢; : Alg—1] —
Alg] given by the inclusion of the i-th face, and
2. (v, 8;7) is equivalent to (7;(v), z) for v in A[g+1], z in S,, and with n; : A[g+1] —
Alg] given by the projection to the i-th face.

Theorem 3.2. (Milnor) Let K be a reduced simplicial set. Then the geometric real-
ization of F[K] is homotopy equivalent to QX|K|.

One corollary is the starting point of Wu's investigation.
Corollary 3.3. There is an isomorphism of groups
T FIK] = 7, QZ|K]|.

Thus w,F[S?] is isomorphic to m, Q8% = m,,1 5%

The point of this corollary is that one can view the homotopy groups of the 2-
sphere as a combinatorially defined object which can be studied through combinatorial
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methods. These methods are frequently quite interesting, although they rarely have
immediate computational value. Part of the features of the structure here is the next
theorem which indicates part of the role of the center in simplicial groups.

Theorem 3.4. If G is a reduced simplicial group, then m,G is contained in the center
of the quotient group G, modulo B,.

Wu then defines an ”r-centerless” simplicial group G, which is a simplicial group
for which the center of G, is trivial for n > r. An example of such a G arises in case
G, is a free group on at least 2 generators for n > r. A specific example is given by
F[SY] which is ”2-centerless”. In degree 1, the simplicial group F[S?] is isomorphic to
the integers, and is thus not ”1-centerless”.

Theorem 3.5. If G is a reduced "r-centerless” simplicial group, then m,G forn = r+1
is equal to the center of Gn/Bn.

Wu then applies this to F[S?] in order to prove his theorem on fixed points, and the
homotopy groups of the 2-sphere. There are further connections between this problem,
and other features of braid groups.

There is another simplicial group AP, which in degree n is Artin’s pure braid group
on n + 1 strands, and which gives some further information concerning Wu’s theorem.
Thus this simplicial group is isomorphic to the integers in degree 1. In joint work of
Wu, and the author, the unique homomorphism of simplicial groups

©: F[S'] — AP,

which sends a generator in degree one to a generator is studied. Some properties are
listed next:

1. ©: F[S'] — AP, is a monomorphism in each degree,

2. thus the g-th homotopy group of F[S?] is a subquotient of P,41,

3. the quotient simplicial set AP,/F[S'] has geometric realization which is homo-
topy equivalent to the 2-sphere, and

4. the (simplicial) loop space of AP, is isomorphic to Milnor’s free group construc-
tion F[A[1]] where A[1] is the simplicial one simplex.

The morphism of simplicial groups © : F[S!] — AP, is related to the set of isotopy
classes of n-component links, £,,, as follows. There is a morphism of sets from the n-th
pure braid group to the set of isotopy classes of n-component links as given in classical
work of Alexander, and Markov [5]:

APn. = .C-n,,

and
AP, — Unzoﬁn.

One question which arises in this context is as follows. Describe the image of F'[S A1
as well as the subgroups given by chains, cycles, and boundaries in the set of isotopy
classes of links. Two examples are given next.
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1. A cycle which represents the Hopf map 7 : S° — S? is given by [z1,z2] in the
set of 2-simplices for F'[S]. The image of this cycle in the set of isotopy classes
of 3 component links is the Borromean rings.

2. The cycle [z, z2]? represents the Whitehead product [i2, t2]. The image of this
cycle is a 3-component link where two circles are ”twisted around each other
twice” while the third circle links the other 2 as if they were the Borromean
rings. (Try it. It is interesting.)

Two important questions which arise in Wu’s work are given next. Consider the n
natural homomorphisms
di:Pp— Paa

obtained by deleting the i — th strand for 1 < i < n. Thus there is an induced
homomorphism

d: P, — H Pi.
1<ign
The kernel of this map is a free group. What is a basis for the kernel of this map ?

A second homomorphism is given by
v: P, = Pn(S?),

the natural quotient of the pure braid group for the plane to the pure braid group for
the 2-sphere S2. This homomorphism is obtained by applying the fundamental group
to the natural inclusion of the configuration spaces F(R? n) — F(S2,n).

What is the kernel of the natural homomorphism

YXd: Py Po(§%) x [[ Pa-1?

1<i<n

4. COHOMOLOGY OF SYMMETRIC GROUPS, AND OTHER GROUPS

This section addresses classical work on the cohomology of the symmetric groups,
certain subgroups of symmetric groups, and related groups. A smattering of informa-
tion about problems, and applications is included. First recall the ingredients required
for the definition of the homology, and the cohomology of a discrete group .

1. An abelian group A is said to be a trivial Z[r]-module, or a trivial m-module,
provided A is a module over the integral group ring of m, Z[n], such ¢(a) = a for
every element a in A, and every element o in 7.

2. Let Z be a trivial Z[r]-module, let M be a left Z[r]-module, and let N be a right
Z[r]-module.

3. Let

v++—= R3— Ro— Ry — Ry— Z — {0}

be a free resolution of Z by free left Z[r]-modules R;.

The definitions of group homology, and cohomology are as follows.
1. The homology of m with N coefficients is

H,(m; N) = TorZ(Z, N),
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and is the homology of the chain complex
-+ — N ®zjx) R3 = N ®z[x) R2 = N Qgjr] Ry — N ®z[n Ro.
2. The cohomology of 7 with M coefficients is
H*(m; M) = Extyy(Z, M),
and is the cohomology of the cochain complex
MO — M= oo Mo MU M2
where M* = Homgy)(Ri, M).

These functors are frequently informative, and frequently computable. They provide
useful ways of measuring interesting behavior. The first few classical results are as
follows.

Theorem 4.1. Let 7 be a finite group of order n.
1. Then n- Hi(m;M) = 0, and n - Hij(m; N) = 0 for all j > 0. Thus if j > 0,
Hi(m; M) respectively H;(m; N) is the direct sum of its p-primary components
pHI (m; M) respectively ,H;(m; N) for all primes p which divide n.
2. Let mp denote the p-Sylow subgroup m. Then the restriction map

pH"(m; M) — H*(mp; M)

is a split monomorphism.

3. If 7 is a finite group with abelian p-Sylow subgroup mp, then the mod-p cohomology
of m is given by H *(ﬂp,Z)N (@) the invariant elements under the action of the
normalizer N(m,) of mp in 7.

Again, the elementary abelian groups are basic examples, as we have seen in several
of the lectures. Their cohomology is classical, basic, and important.

Theorem 4.2. 1. The cohomology ring H*((Z/2Z)";F3) is a polynomial ring with
generators z1, ..., T, of degree 1.

2. Ifr > 2 or p is an odd prime, then the cohomology ring H*((Z/p"Z)™;F,) is the
tensor product of an exterior algebra with generators x1, ..., T, of degree 1 tensored
with a polynomial ring with generators yi,...,yn of degree 2. Furthermore, the
r — th Bockstein (3, of z; is defined and satisfies the formula B-(z;:) = y:.

A second important example is the symmetric group on n letters £,. The homology,
and cohomology of symmetric groups is addressed next. Let ¥, denote the colimit
of the ¥, under the natural inclusion. There are analogues for Artin’s braid groups
Br, — Brp41 with colimit denoted Br,. The homology of these groups is related to
the homology of certain useful topological spaces.

One connnection between the cohomology of the symmetric groups, and that of
elementary abelian p-groups is as follows: The regular representation of (Z/2Z)", a
homomorphism (Z/2Z)" — =, induces a map H*(Z2n;Fo) — H*((Z/2Z))™;F2)
which has image given by the Dickson algebra on n generators, the invariant subal-
gebra under the natural Gl(n,Fs)-action. There is a further connection to spaces of
continuous functions as described next.
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Consider the natural suspension map X — QXX which is the adjoint of the identity
TX — TX. Iterating, thereis amap Q"E"X — Q"H1E"1X with QX =lim Q"L X.
Write 23E™ X, and QoX for the respective path component of the identity. One feature
of the spaces QX is that if X is a CW-complex, then the i-th homotopy group of QX
is isomorphic to the i-th stable homotopy group of X. Thus properties of @X impact
the stable homotopy groups of X.

The following theorem concerning the symmetric groups has input from many people
including Araki, Kudo, Nakaoka, Dyer, Lashof, Barratt, Priddy, and Quillen [4, 1, 24,
10, 15]. The second part was proven in work of May, Segal, and the author [29, 6, 18].

Theorem 4.3. Assume that homology is taken with any trivial coefficients. (Namely,
the fundamental group of each space acts on the coefficients by the identity map.)

1. There is a map BEo — QoS® which induces a homology isomorphism.
2. There is a map BBro, — Q2S5% which induces a homology isomorphism.

A more general version is the Kan-Thurston theorem: If X is a path-connected CW-
complex, then there exists a K (m, 1) together with a map K (m,1) — X which induces
a homology isomorphism with any trivial coefficients. Thus, on the level of homology,
many reasonable spaces behave as if they are K(m,1)'s.

Some preparation for applications of the homological properties above are given
next. There are maps RP* — (§°S* which induce an isomorphism on the level of
fundamental groups given by Z/2Z. One such map is induced by reflection through
the hyperplane orthogonal to a given line through the origin. This gives a map to the
—1-component of O(n), RP*~! — O(n). Translating to the +1-component of O(n),
and letting n go to infinity gives P* — SO — QFS®. Let © : QRP>® — Q8>
denote any extension which is a loop map. The following is the 2-primary Kahn-Priddy
theorem. There is an odd primary version.

Theorem 4.4. The map © has a 2-local section. Thus after localization at p = 2, the
following is satisfied:
1. There is a 2-local homotopy equivalence
QRP*® — QS x X
for some space X .
2. The map © : QRP>® — QPS> gives a split epimorphism on the 2-primary
components of homotopy groups.

A non-stable analogue of this theorem is gotten as follows. Consider the cofibration
§% — S% - P3(2) where the map S — S2 is degree 2. Applying the pointed
mapping functor to this cofibration gives a fibration g : 025™ — Q25™ given by the
H-space squaring map with homotopy theoretic fibre denoted map, (P?(2), %), where
map.(A, B) denotes the space of pointed maps from A to B. Notice that P3(2) is
homotopy equivalent to the suspension of the projective plane TRP2. Let W,, denote
the homotopy theoretic fibre of the double suspension E? : 5271 — 2§2n+1

Theorem 4.5. 1. If p is an odd prime, then there is p-local equivalence
map.(P*(p), S#1) —» Q28% < 3> xW,.
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Thus map.(P3(p), $%1) — Q28% < 3 > induces a split epimorphism on the
p-primary component of homotopy groups, and p annihilates the p-primary com-
ponent of m;S% for any i > 3.

2. There is a 2-local equivalence

map,(SRP?, §°) — Q25° < 3 > xWh.

Thus map,(SRP?, §%) — 025% < 3 > induces a split epimorphism on the 2-
primary component of homotopy groups, and 4 annihilates the 2-primary compo-
nent of m;S° for any i > 3.

The method of proofs of these theorems is given by constructing maps, and then
appealing to the cohomological results in Theorem 4.2 above to prove that a map is an
equivalence. The Kahn-Priddy theorem is, of course, due to D. S. Kahn, and S. Priddy.
The odd primary result in Thorem 4.5 above is due to P. Selick while the 2-primary
theorem is due to the author.

Next consider further extensions given by the wreath product X, ! G which is the
group extension

1- G- Z,1G— E,— 1

which is specified as follows:

1. As a set £, 1 G is isomorphic to &, X G™ with elements written as (c; g1, ..., gn)-
2. The multiplication is specified by

(0391, 9)(T; Rty ey Bn) = (073 g--1(1)ha, ---:g'r-l(n)hn)‘

3. The fundamental group of EX,, x5, X™ is isomorphic to X,2G for path-connected
spaces X with m(X) = G.

There is a slightly more general, and useful definition of the wreath product which
fits in other contexts. Namely, given any homomorphism f : I —» X,, define the
wreath product II? G ( where the notation does not display the dependence of the
extension on the homomorphism f ) as a pull-back:

ImnGg —— 11

! l

Z.0G6 — I,

Thus there is a morphism of group extensions:

1 » G™ G II » 1
il | A
1 Gn » Lal G Yo 1

Consider the Lyndon-Hochschild-Serre spectral sequence for this extension with co-
efficients in a field F in homology. Then,

E?, = H(IL; H(G™,F)).
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A modification and interpretation of some earlier results of Steenrod are given in [6],
Lemmas 4.1-4.3, and these imply that E2 = E*°. A similar assertion applies in coho-
mology if H*(G;F) is of finite type.

Next, notice that H,(G™;F) is isomorphic to V®™ for V = H.(G;F). As a module
over ¥,, and hence as a module over G, V®" is a direct sum of cyclic £,-modules
which depend on choices of partitions of {1,2,...,n}, say Mj. For example, if G is the
trivial group, then V' = F concentrated in degree 0, and the modules M, are always
trivial.

As a second example, assume that the b, run over a totally ordered basis for
H,.(G;TF). Consider the cyclic ,-module generated by the element

A=b8" b8 --- @b

where
1. P is an ordered partition of n such that P = (nq,ns,--- ,ng) for n; > 0 with
ni+ngt-Fng=n,
2. B is a sequence of strictly increasing basis elements with B = (ba,, by, ; ba,)

for by, < ba, < -+ < by, , and
3. the pairs labelled by A = (P, B) run over all distinct such pairs (P, B).

Then a direct sum decomposition for the II-module V®" is given by
©a=(p,B)MAx.
Consequently, there is a homology isomorphism
H.(II1 G;F) — @©pH.(II; My).

Furthermore, if Il = £,, and F = Z/2Z, then H.(X,; My) is isomorphic, apart from a
degree shift given by the degree of 537 @ b2z - ® b?:“"‘ , to

H*(2n1 X Enz Xoeee Enq;Z/2Z)
where T, X I, X -+ Iy, is the subgroup of T, that fixes 8™ @ b7 .. @ ba.
Thus the mod-2 homology of the wreath product £, 1 G is given in terms of the mod-2
homology of subgroups of ¥,, with trivial coefficients in Fs.

There is an analogous description over a field of odd characteristic for which modifi-
cations using trivial coefficients or coefficients in the sign representation are used. This
case will not be addressed in these abbreviated notes.

Next notice that the Lyndon-Hochschild-Serre spectral sequence in cohomology with
trivial coefficients in F collapses for the extension

1-G-IIIG-1I-1

by a cochain level argument provided the cohomology of G with F coefficients is of
finite type. The resulting Fs-term is dually given in terms of (1) the cohomology of G,
and (2) ordered partitions of n. This remark is stated as the following theorem.

Theorem 4.6. The homology of 111 G with field coefficients F is given by
H,(IL; Hyo(G™; F)) = @a Ha(I; Ma).

44



LECTURES IN IOANINNA

Furthermore, the homology is naturally bigraded by
H,(IT; H(G™ F))
in bidgree (s,t). The homology in total degree q is given by
H,(IT2 G;F) = @3+t=qHs(H;Ht{Gn§F))-
In case G = T, these homology groups are given in terms of

1. the additive structure of H.(G;F), and
2. ordered partitions of n as described above.

A second interpretation of E; fits with the subjects in this conference. This inter-
pretation will be illustrated in several cases below.

1. Assume that G = Z/2Z, and that the coefficient field is Fp = Z/2Z. Then
H*(BG™;Fs,) is a polynomial ring in n indeterminates of degree 1 with the -
action specified by the polynomials in the fundamental representation of X,
Fo[V,]. Thus the E3"-term of the Lyndon-Hochschild-Serre spectral sequence
abutting to the mod-2 cohomology of £, 1 G is given by

H*(Zn; H'((Z/2Z)™; F2).
By the above remarks, this spectral sequence collapses, and so E; = FE... Hence

H*(Z,;F2[V;]) is given in terms of the cohomology of subgroups and partitions
listed above.

In addition, the cohomology of X, ! G with field coefficients I is naturally
bigraded, and is given by H*(Z,; H*((G)™;F) in bidegree (s,t). The invariant
subalgebra H*(BG™;F3)=» is given by H%(Z,;F2(Va]). The ring of invariants is
precisely the mod-2 Dickson algebra, and has bidgree (0, *) where * denotes the
standard grading for the Dickson algebra.

2. A similar assertion follows for G = S, and where the coefficient field is F, =
Z,/pZ. The wreath product construction here is given by the normalizer of the
maximal torus in the unitary group U(n). Similarly, H*(BG™;F,) is a polyno-
mial ring in n indeterminates of degree 2 with the T -action specified by the
fundamental representation of X, Fp[Va]). Again, H*(Z,;Fp[V2]) is given in
terms of the cohomology of subgroups of the symmetric group with the trivial
representation, and partitions listed above. The resulting answer is (1) the co-
homology of the wreath product, and (2) identifies the ring of invariants as the
summand of cohomology group of the wreath product concentrated in bidegrees

(0, x).

3. Let G = Z/p"Z, with the coefficient field F,, = Z/pZ for an odd prime p. Then
H*(BG™;F,) is the tensor product of a polynomial ring in n indeterminates
of degree 2 with an exterior algebra in n indeterminates of degree 1, E[V,].
The T,-action is specified by that on the fundamental representation which is
extended multiplicatively to Fp[V,] ® E[V,]. Again, H*(Zn; Fp[Vn] ® E[Vh]) is
given in terms of the cohomology of subgroups of X, with coefficients in either
the trivial representation or the sign representation. The subgroups are of the
form T, X T,, X -+ Ty, and fix 6™ @ 6872 ---®b§:" up to a sign.

4. These constructions are useful in characteristic zero where symmetric groups are
replaced by other discrete groups such as SL(2,Z), Sp(2g,Z), mapping class

45



F. COHEN

groups, or braid groups. In these cases, some answers are given in terms of
constructions in analytic number theory. ( Please see the problems below.)

5. PROBLEMS

(1): Let G be a discrete group together with a representation p : G — GL{(n, R) for
R either a finite field or the integers. Write V;, for the direct sum of n copies of R, the
fundamental represention of GL(n, R).

Functors given by P[V,], E[V,], and T[V,,], the polynomial ring, exterior algebra,
and tensor algebra respectively generated by V,, are naturally GL(n, R)-modules. What
can be said about the cohomology groups of G with coefficients taken in P[V,], E[Vx],
and T[V,] ?

The motivation for this question is that there have been useful applications of known
examples as suggested below.

1. When G is the symmetric group on n letters, &, with the natural n-dimensional
representation, then the cohomology with coefficients in P[V,,], E[V,], or their
tensor product is known implicitly from work of Steenrod and others. For exam-
ple, over the field of 2 elements, H*(Z,;F2[V;]) gives the Es= E,, term of the
Lyndon-Hochschild-Serre spectral sequence abutting to the mod-2 cohomology of
the wreath product

En l Z.-:2

(where X, ! G is a group extension 1 - G" — £,1G — I, — 1).

The additive structure of the Fj,- term is given in terms of partitions, and
the cohomology of certain choices of subgroups of the symmetric groups obtained
from these partitions.

Related remarks concerning representations, as well as subgroups of the sym-
metric groups are recalled in Cohen’s lecture notes.

2. When G = SL(2,Z), and Vo = Z & Z, the rational cohomology of G with coeffi-
cients in P[V3], E[V5], or their tensor product is known in terms of classical mod-
ular cusp forms based on the standard SL(2,Z)-action on the upper 1/2-plane.
These calculations trace back to work of Eichler, and Shimura on automorphic
forms [11, 29, 13].

3. When G is GL(n, R), then S. Betley has proven a general vanishing theorem
for these coefficients as n goes to infinity. According to Betley, the analogous
question for the symplectic groups remain undecided.

4. When G is the mapping class group for a closed surface of genus g, I',, there is
an epimorphism
T, — Sp(2g,2).
The cohomology groups H*(T'y; Q[V2,]) have been studied by E. Looijenga who
has obtained a stability result. These groups as well as H*(T'y; Q[Va4] ® E[Vag])
inform on the cohomology of mapping class groups for punctured surfaces.
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5. In the special case of R = Z/2Z, there is an isomorphism Xg — Sp(4, R). What
is H*(Ze; R[Va] ®z/2z E[V4]) 7

(2): Describe the Dyer-Lashof algebra as a collection of natural transformations as
suggested by Bisson’s lecture, and in the spirit of Smith’s lectures. Selick, and Campbell
have given a construction which pieces together the Steenrod algebra together with
the Dyer-Lashof algebra into one giant natural algebraic construction. Is this object
describing the natural transformations of certain natural choices of functors ?

(3): Two important questions which arise in Wu’s work and which were stated above
are as follows: Consider the n natural homomorphisms

di:Pn—P P_.1

obtained by deleting the i —th strand for 1 < i < n. What is a free basis for the kernel
of the induced homomorphism

d: P, — H Poa?

1<i<n

What is the kernel of the natural homomorphism

yxd:Py— Pa(8%)x [] Pat?

1<i<n

(4): Characterize the image of F[S!], as well as the subgroups given by chains,
cycles, and boundaries in the set of isotopy classes of links.

(5): Find useful group theoretic characterizations of the homotopy groups of spheres.
Do these "fit” with the braid groups ? How does the structure of the isotopy classes
of n-component links impact the homotopy groups of the 2-sphere 7 Find interesting
analogues of the Kahn-Priddy theorem which apply to the (2n+1)-sphere and which
are natural extensions of the analogue for the 3-sphere.
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During the month of June 2000 Fred Cohen (University of Rochester, USA) and I, directed,
and lectured to, a summer school at the University of Ioannina in Greece. The purpose of the
summer school was to make some of the recent developments on the interface of invariant
theory and algabraic topology accesible to students. This proved not to be an easy undertak-
ing, and in the year before the summer school, Fred and I spent many hours discussing in
person, and weeks exchanging e-mail mesages, the problems connected with organizing a
coherent program, i.e., selecting from the material with which we were familiar to create a
program that hung together well.

One topic that seemed central to our planning was the Steenrod algebra. Beginning with the
paper of J. F. Adams and C. W. Wilkerson [1], it has had a significant influence on the devel-
opment of invariant theory (see e.g. [21], [22], [18], and [17] and their reference lists). This
presented us with the problem of explaining the Steenrod algebra to non algebraic topologists
in a concise, motivated, and nontechnical ! algebraic manner. A decade ago at Yale I was
confronted with the same problem when teaching a course on invariant theory to an audience
consisting primarily of algbraicists, group theorists, and number theorists. I explained how I
did this to Fred: the basic idea was to regard the total Steenrod operation as a perturbation of
the Frobenius map, and to define the Steenrod algebra as a subalgebra of the endomorphisms
of a certain functor gotten from this perturbation.

This got Fred to thinking about some things he was familiar with, which had a similar nature.
These he explained to me. In the course of doing so, we found that a common, but not well
brought out theme, in many of the topics we felt to be relevent for the summer school, was
the structure of a subgroup, or subalgebra, of automorphisms of a functor: generally a simple
and easily understood functor, where the subgroup, or subalgebra, had a natural origin. We
decided to organize the summer school around this theme. '

The purpose of these notes is to provide an introduction to the Steenrod algebra in this man-
ner, i.e., presented as a subalgebra of the algebra of endomorphisms of a functor. The functor
assigns to a vector space over a Galois field the algebra of polynomial functions on that vector
space, and the subalgebra is specified by means of the Frobenius map.

The material presented here is not new: in fact most of the ideas go back to the middle of the
last century, and are to be found in papers of H. Cartan [6], [7], J.-P. Serre [19], R. Thom [28]
and Wu-Wen Tsiin [33], with one key ingrediant being supplied by S. Bullet and L. Macdonald
[5] (see also T.P. Bisson [3]). My contribution, if there is one, is to reorganize the presenta-
tion of this material so that no algebraic topology is used, nor is it necessary to assume that
the ground field is the prime field. This way of presenting things appeared in print spread
through Chapters 10 and 11 of 2 [21]. (See also [20].) For the summer school I collected all
this, stripped it of the applications to algebraic topology, and expanded it to include the Hopf
algebra structure of the Steenrod algebra due to J.W. Milnor [13] for the prime field.

I have kept these notes to a minimum, and can only encourage the reader to consult the
vast literature on the Steenrod algebra. For orientation in this morass the reader can do no
better than to consult the excellent survey artical [31]. In addition to the references already
mentioned, the course notes from the lectures of Prof. R. Wood at the Summer School [32] in
Toannina provide an excellent list of accesible papers and problems (sicl).

In what follows we adhere to the notations and terminology of [21] and [18]. In particular,

1No Eilenberg-MacLane spaces, no vy products, etc.

2 The emphasis in Chapter 10 of [21] is on certain topological applications: in these notes, and at the summer school in Ioannpina,
I replaced this with some examples from invariant theory.
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if F is a field and V =EB" is an n -dimenaional vector space over F, then F[V] denotes the
graded algebra of polynomial functions on V. This may be regarded as the symmetric algebra
on the dual vector space V* of V', where the elements of V*, the linear forms, have degree
1. Note carefully we ignore the usual topological sign conventions, since graded commutation
rules play no role here. (For a discussion of gradings see e.g., [18] Appendix A Section 1.)
The correspondence V ~~ F[V] defines a contravariant functor from vector spaces over F to
graded connected algebras, which is at the center of what follows.

§1. The Steenrod Algebra

We fix once and for all a Galois field F, of characteristic p containing g = p” elements.
Denote by F,[VI1[[¢]] the power series ring over F,;[V] in an additional variable ¢, and set
deg(£) = 1- g . Define an F, -algebra homomorphism of degree zero

P (&) :Fy[V1— B, [VIIIE]L
by requiring
P(E)L) = £+ 29¢ e Bg[VI[[¢]], V linear forms Le V™.

For an arbitrary polynomial f € F,[V], we have after separating out homogeneous compo-
nents, 3

S Pi(f)El ifpis odd,
i=0

(%) PN =R
L 8q'(e’ ifp =2

This defines #*, resp. Sq’, as F, -linear maps
P, 8q" 1 Fy[V]— Fy[V].

These maps are functorial in V. The operations &*, respectively Sq', are called Steenrod
reduced power operations, respectively Steenrod squaring operations, or collectively,
Steenrod operations. In order to avoid a separate notation for the case p = 2, with the
indulgence of topologists,* we set Sq' =&* forall i e Ny.

The sums appearing in (%) are actually finite. In fact P(£)(f) is a polynomial in £ of de-
gree deg(f) with leading coefficient 9. This means the Steenrod operations acting on Fg[V]
satisfy the unstability condition

iy - [ 9 ifi=deg(f),
PHf)= {0 it > deglf), V feRI[V]
Note that these conditions express both a tﬁviality condition, viz.‘, PH(f)=0 for all i >deg(f),
and, a nontriviality condition, viz., pleelf ") = f9. 1t is the interplay of these two require-
ments that seems to endow the unstability condition with the power to yield unexpected con-
sequences.

Next, observe that the multiplicativity of the operator P (¢) leads to the formulae:
- Q)k(f'f”) = Z Fj’i(f')“})j(f”), Vfr,f" EIFQ[V].
i+j=k
These are called the Cartan formulae for the Steenrod operations. (N.b., in field theory, a

family of operators satisfying these formulae is called a higher order derivation. See, e.g.,
[12] Chapter 4, Section 9.) '

3 Let me emphasize here, that we will have no reason to consider nonhomogeneous polynomials, and implicitly, we are always
assuming, unless the contrary is stated, that all algebras are graded, and if nonnegatively graded, also connected. The algebra
F[VI[{¢]] is graded, but no longer connected.

4 This is not the usual topological convention, which would be to set ¥* = Sq? . This is only relevant for this algebraic approach
when it is necessary to bring in a Bockstein operation.
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As a simple example of how one can compute with these operations consider the quadratic
form

Q= x2+xy +y2 e Bylx, yl.

Let us compute how the Steenrod operations Sq' act on @ by using linearity, the Cartan
formula, and unstability.

Sql(Q) = Sq*(x%) + Sq*xy) + Sa*(y®)
= 2xSq (x) + Sq*(x) -y +x - Sq'(y) +2ySq'(y)
=0+ 2%y +xy? +0 = 2%y + xy?,
S (@) =Q%=x*+ x2y? ¢ y4,
Sq'(Q) =0 for i > 2.

Since the Steenrod operations are natural with respect to linear transformations between
vector spaces they induce endomorphisms of the functor

B, [-] : Vectp, — ﬁlgmq

from F, -vector spaces to commutative graded F, -algebras. They therefore commute with the
action of GL(V) on F,[V]. If G & GL(n,Fy) isa faithful representation of a finite group
G then the Steenrod operations restrict to the ring of invariants F, [V]€, i.e., map invariant
forms to invariant forms. Hence they can be used to produce new invariants from old ones.
This is a new feature of invariant theory over finite fields as opposed to arbitrary fields (but
do see in this connection [10]). Here is an example to illustrate this. It is based on a result,
and the methods of [23].

EXAMPLE 1: Let F, be the Galois field with g elements of odd characteristic p, and con-
sider the action of the group SL(2,F,) on the space of binary quadratic forms over Fy by
change of variables. A typical such formis Q(x,y) = ax? +2bxy +cy?.

The space of such forms can be identified with

T [a b ] the vector space Maty’y (F,) of 2x2 symmetric

b e matrices over F, . Under this identification the

form @ corresponds to the matrix Tg at the left, and the action of SL(2,F,) is given by

TqH— STgSY™, where S e SL(2, Fy), with St the transpose of S. The element -l & SL(2, Fg)

acts trivially. By dividing out the subgroup it generates, we receive a faithful representation

of P28L(2, F,) = SL(2, Fy) i {il} on the space of binary quadratic forms. This group has order
qlg=-1)2.

The action of PSL(2, F,) on Mat35 (B,) preserves the quadratic form det: Matgy (Fy) — Fq
and since there is only one, up to isomorphism, nonsingular quadratic formin 3 variables over
F, (cf., [9] §169-173), we receive an unambiguous faithful representation o : PSL(2, Fg) &
©(3, Fy). Denote by

x5 s *
[y . ] e Mat3" (Fy)
a generic linear form on the dual space of the 2x2 symmetric matrices over F, . Per definition
the quadratic form

det=xz-y2 <R, Mat3;" (F,)l = Fqlx, y, 21

is O(3, F,)-invariant. If we apply the first Steenrod operation to this form we receive the new
invariant form of degree q +1, viz.,

PU(det) = 292 + 227 - 2y 7! & Bylx, 3, 2177,

The full ring of invariants of the orthogonal group ©(3,F,) is known (see, e.g., [8] or [23]). To
wit

Folz, y, 21%®F = F, [det, 9 (det), Eget-
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Here Eg4e is the Euler class (see e.g. [26] or [18] Chapter 4) associated to the configuration of
linear forms defining the set of external lines to the projective variety ¥g4e¢ in the projective
plane PF,(2) over F, defined by the vanishing of the determinant 5 (see [11] Section 8.2 and
[23]). The form Eg. has degree g(g —1). The three forms det, Pl(det), Eq € Fylx, v, z] O3 F)
are a system of parameters [23].. Since the product of their degrees is |O(3, IE"q)l it follows
from [21] Proposition 5.5.5 that F,[x, ¥, zZ]°®F) must be a polynomial algebra as stated.

The pre-Euler class 4. of the set of external projective lines to X4, is an ©(3,F,;) det-
relative invariant, so is SO(3, Fy)-invariant. It has degree (J), and together with the forms

det and P(det) it forms a system of parameters for F,[x,y, z]S9°@F) so again we may
apply Proposition 5.5.5 and conclude that F,[x, y, z]S®3F<) is a polynomial algebra, viz.,
Fylx, y, 2]S0BF) = F,_ [det, P (det), e4er] -

Finally, PSL(2, F,) is the commutator subgroup of SQ(3, F,;) and has index 2 in SO(3,F,),
so by a Proposition in [25] the ring of invariants of PSL(2, F,) acting on the space of binary
quadratic forms is a hypersurface. It has generators det, $'(det), €4; and a certain form ©
which satisfies a monic quadratic equation over the subalgebra generated by the first three.

A choice for @ is the pre-Euler class of the configuration of interior projective lines to the
variety ¥g.; < PF(3).

The Steenrod operations can be collected together to form an algebra, in fact a Hopf algebra
(see Section 4), over the Galois field F, .

DEFINITION: The Steenrod algebra &°(F,) is the [, -subalgebra of the endomorphism
algebra of the functor F,[-], generated by PO=1,9 9% ..

NOTATION: In most situations, such as here, the ground field F, is fixed at the outset,
and we therefore abreviate &"(F,;) to &".

The next sections develop the basic algebraic structure of the Steenrod algebra

§2. The Adem-Wu Relations

The Steenrod algebra is by no means freely generated by the Steenrod reduced powers. For ex-
ample, when p =2 itis easy to check that Sq'Sq’ =0 by verifying this is the case for monomials
2F = z{',..., z&: to do so one needs the formula, valid for any linear form, Sql(z*) = k2*+1,
which follows by induction immediately from the Cartan formula. ¢

Traditionally, relations between the Steenrod operations are expressed as commutation rules
for PP/, respectively Sq'Sq’ . These commutation relations are called Adem-Wu relations.
In the case of the prime field F, they were originally conjectured by Wu Wen-Tsiin based on
his study of the mod p cohomology of Grassmann manifolds [33] and proved by J. Adem in [2],

H. Cartan in [6], and for p =2 by J.-P. Serre in [19]. These relations are usually written as
follows:

[i/g] ((q =1=R)=1

PP =3 (=L i~ gk )9*’*]’*@* Vi, j20,i<gj.
k=0

Note for any Galois field F, the coefficients are still elements in the prime subfield F, of F;.

The proof of these relations is greatly simplified by the Bullett-Macdonald identity, which
provides us with a well-wrapped description of the relations among the Steenrod opera-
tions, [5]. To describe this identity, as in [5], extend P(§) to a ring homomorphism P (§):

5 The projective plane of B, is defined by PF(2) = (F3 \ {0})’" where F* acts via scalar multiplication on the vectors of F3
In this discussion we are identifying FS with Mat35"(Fy), so this is the same as the set of lines through the origin in Mat3’" .
The pre-Euler class ey, may be taken to be the product of a set of linear forms {{.} ,indexed by the (3) external lines {L} to
%4et , and satisfying ker(£.) =L. The Euler class Ege is its square.

6In fact every element in the Steenrod algebra is nilpotent: but the index of nilpotence is known only in a few cases, see e.g.
[15], [16], [29], [30] and [31] for a resumé of what is known.
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R(V]In] — B[V1Inll¢] by setting P(£))(n)=n. Next, set u =(1- 391 = 1 Gpa soakd 9 and
s = tu . Then the Bullet-Macdonald identity is

P(s)oP(1)=P(u)oP(£?).

Since P(§) is additive and multiplicative, it is enough to check this equation for the basis
elements of V*, which is indeed a short calculation. Rumor says, Macdonald, like most of
us, could not remember the coefficients that appear in the Adem relations, so devised this
identity so that he could derive them on the spot when J. F. Adams came to talk with him.

REMARK: For p = 2 T.P. Bisson has pointed out (see [4]) that the Bullet-Macdonald may
be viewed as a commutation rule, viz., P(£)P(n) =P (n)P(£). For a general Galois Fy, one
needs to demand GL(2, B,)-invariance of P({), where ¢ = Spang,_ {£,7}.

To derive the Adem-Wu relations we provide details for the residue computation’ sketched
in [5]. First of all, direct calculation gives:

P(sP(D) =) s*P°P*
a, k

PPt =Y ut+bipaigertg
a, b, j
which the Bullett-Macdonald identity says are equal. Recall from complex analysis that

1 1 m=-1
Manil md =
21’1’1%,2 z {0 otherwise

where v is a small circle around 0 € C. Therefore we obtain

Soegh o L POy,
3 ¥

Tfi sa+1

ds

T omi sa+l

1 f P(u)P(t?)
Y

1 ua+b—thj 2 g

— pa+b=j¢

=5 E f—-—sml ds&¥ @
a, b,j"7

The formula s = ¢(1 - ¢)?"! gives ds = (1-¢)7%(1- qt)d¢ , so substituting gives
ua-:-b-jtqj (1~ t)(q—l)(a+b-j)tqj(1 _ t)q—Z(l - qt)
ga+l = [t(l _ t)q—l]“"’l
= {1 — t)(b-j—l)(q—1)+(q—2)tqj—a—l(l _ qt)dt
= (1 —¢)eNa-1-Dygj-a-1(1 _ a4)d¢

- | Tt ((b hg == 1) tk} (Y1 _ gt)dt
k

dt

k

=S 1t ((b = )(‘i" b= 1) e gthve| d .
k

Therefore

+b—j+q]
gt =3 1 fut7t | pavsig
~ |27 J, ga+l

J

1 b (b —J)(q —1)—1 k+qj-a-1 k+gj—a a+b=i¢pJ
=Zz—ﬂ—”{;(-1) ( : [t =gt ]dtﬂ’ P,
)

7 The following discussion is based on conversations with E.H. Brown Jr. I do hope I have come close to getting the indices correct
for once.
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Only the terms where
k+gj-a-1=-1 (k=a-q)j)
E+qj-a=-1 (k=a-qgj-1)
contribute anything to the sum, so

.‘Paf})b _ Z [(_l)a_qj) ((b '_J)(q — LY 1) + (_l)a—q_j—lq ((b _J)(q - 1)~ 1)} Ej)a+b-j£pj
; a-qj a-gj-1

and since

((b -jq —1)—1) _q((b ~iXg -1)~1)
a-gqj a-qj-1

we conclude

((b -Jj)Ng - 1)—1) mod
a-gqgj

g)aEPb — Z(_l)a—qj ((b —Jg - 1) - 1) g)a+b—-jg)j.
F a-=-qj
Thus there is a surjective map from the free associative algebra with 1 generated by the
Steenrod operations modulo the ideal generated by the Adem-Wu relations,

Pl Z(*-l)“"” ((b —J;(ﬁ ;jl) a I)EP'”b'j.‘J’j a,beNanda<gb,
dJ

onto the Steenrod algebra. Denote this quotient algebra by $*. In fact, this map, 8" — 2~
is an isomorphism, so the Adem-Wu relations are a complete set of defining relations for the

Steenrod algebra. The proof of this, and some of its consequences, is the subject of the next
section.

§3. The Basis of Admissible Monomials

In this section we show that the relations between Steenrod operations that are universally
valid all follow from the Adem-Wu relations. To do so we extend some theorems of of H. Cartan,
(6], J.-P. Serre, [19], and Wu Wen Tsiin, [33] from the case of the prime field to arbitrary Galois
fields. We also rearrange their proofs so that they do not make any direct use of topology.

An index sequence is a sequence I = (i, ip,..., i3,...) of nonnegatwe integers, almost
all of which are zero. If I is an index sequence we denote by ?' e #* the monomial
P .Pi2.. P ... in the Steenrod operatlons &' | with the convention that trailing 1s are
ignored. The degree of the element P is (g - 1)(]1 +jo 4 -+ +jp +--). These iterations of
Steenrod operatlons are called basic monomials. An 1ndex sequence I is called admissible
if is 2 qige; for s=1,.... Wecall k the length of I if i, #0 but i; =0 for s > k. Write £(I)
for the length of I. It is oﬂ:en convenient to treat an index sequence as a finite sequence of
nonnegative integers by truncating it to £(I) entries.

A basic monomial is defined to be admissible if the corresponding index sequence is admis-
sible. The strategy of H. Cartan and J.-P. Serre to show that the Adem-Wu relations are a
complete set of defining relations for the Steenrod algebra is to prove that the admissible
monomials are an F, basis for .

Recall that 8" denotes the free, graded, associative algebra generated by the symbols P*
modulo the ideal spanned by the Adem-Wu relations. We have a surjective map 8° — &,
and so with his notation our goal is to prove:

THEOREM 3.1: The admissible monomials span 3" as an B, -vector space. The images of
the admissible monomials in the Steenrod algebra are linearly independent.
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PROOF: We begin by showing that the admissible monomials span 3~ .

For a sequence I = (i1, is,..., iz), the moment of I, denoted by m(I), is defined by m(I) =
S % | 5-is. We first show that an inadmissible monomial is a sum of monomials of smaller
moment. Granted this it follows by induction over the moment that the admissible monomials
span B".

Suppose that ¢! is an inadmissible monomial. Then thereis a smallest s such that is <gis.1,
l.e.,

9l = @' Pplgpisn g
where @', 9" are basic monomials, and Q' is admissible. It is therefore possible to apply
an Adem-Wu relation to ¥’ to obtain

.
P =3 q;@ girrisnigig"

g

for certain coefficients aj € Fp. The terms on the right hand side all have smaller moment

than #! , and so, by induction on s we may express P! as a sum of admissible monomials.
(N.b. The admissible monomials are reduced in the sense that no Adem-Wu relation can be
applied to them.)

We next show that the admissible monomials are linearly independent as elements of the
Steenrod algebra #* . This we do by adapting an argument of J.-P. Serre [19] and H. Cartan
[6] which makes use of a formula of Wu Wen-Tsiin.

Let ey = x1x9 -+ x, € Bylx1,..., xp] be the n-th elementary symmetric function. Then,

P(&Xes) =P @[] =] P &)=

i=1 i=1

- H(xi +x?$) = Hxi * ln_I(l +x?'1€)
i=1 i=1 i=1

n
= = ]
=en(x1,..., xn)- (Zei(xf yeeny xg I)EI) ’
i=1

where e;(x1,..., x,) denotes the i-th elementary symmetric polynomial in xj,..., %n- So
we have obtained a formula of Wu Wen-Tsﬁn:

Pie,) = e, -e,-(xf_l,..., xg‘l).
We claim that the monomials
{sff | 7 admissible and deg(9”) < 2n}

are linearly independent in Fg[x;,..., x]. To see this note that in case 2(IN < n, each entry
in I is at most n (so the following formula makes sense), and

s
I = 21
(‘J’(en)=en-Hegj(xf peen I+

. J=1
where I =(iy,..., is), PT =P ---&P* and the remaining terms are lower in the lexicographic
ordering on monomials. So e, - Hj=1 eij(xg"l, e, xﬁ_l) is the largest monomial in ¥"(e,) in

the lexicographic order. Thus

[9Men | &1 admissible and deg(@')<2n},
have distinct largest monomials, so are linearly independent.
By letting n — ¢ we obtain the assertion, completing the proof. (]
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Thus the Steenrod algebra may be regarded (this is one traditional definition) as the graded
free associative algebra with 1 generated by the Sq° respectively ¥ modulo the ideal gener-
ated by the Adem-Wu relations. This means we have proven:

THEOREM 3.2: The Steenrod algebra &" is the free associative R, -algebra generated by
the reduced power operations 9°, ¥, &2 ... modulo the Adem-Wu relations. O

COROLLARY 3.3: The admissible monomials are an R, -basis for the Steenrod algebra & .
G

Since the coefficients of the Adem-Wu relations lie in the prime field F, , the operations ¥” '
for { 20 are indecomposables in &?°. In particular, over the Galois field F,, the Steenrod
algebra 22" is not generated by the operations 99" for i >0: one needs all $#' for i >0.

This will become even clearer after we have developed the Hopf algebra structure of " in
the next section.

EXAMPLE 1: Consider the polynomial algebra Fy[@Q, T] over the field with 2 elements,
where the indeterminate @ has degree 2 and T has degree 3. If the Steenrod algebra were
to act unstably on this algebra then the unstability condition would determine Sq*(€) and
S¢/(T) apart from i =1 and j =1 and 2. If we specify these as follows

Sql(@) =T, SqT)=0, Sq¥T)=QT,

and demand that the Cartan formula hold, then using these formulae we can compute Sqf
on any monomial, and hence by linearity, on any polynomialin @ and T'. For example

SqUQT)=Sq%(Q) T +Q -SqMT)=T?+0=T?,

and so on. Note that since Sq* - Sq! = 0 is an Adem-Wu relation, Sql(T) =0 is forced from
Sq'(Q) = T. To verify the unstability conditions, suppose that

[%]
b-1-
Sqasqb = Z ( C)Sqa+b--csqc’ O<a<2b,

a-2¢
c=0

is an Adem-Wu relation. We need to show that
i%] b-1
— — C » »
Sqasqb_z ( )Sqa+b—csqc (QLTJ) =0

a -—
=~ 2ec

for all i, j € N . By a simple argument using the Cartan formulae, see, e.g., [27] Lemma 4.1,
it is enough to verify that these hold for the generators @ and T, and this is routine. Itisa
bit more elegant to identify @ with x%+xy +y2 and T with x2y + xy? e Falx, y]. The action
of the Steenrod operations on @ and T then coincides with the restriction of the action from
Fy[x, y]. This way, it is then clear that Fy[@, T'] is an unstable algebra over the Steenrod
algebra, because with some topological background we recognize this as just H (BSQ(3); F2).

§4. The Hopf Algebra Structure of the Steenrod Algebra

Our goal in this section is to complete the traditional picture of the Steenrod algebra by prov-
ing that &'(F,) is a Hopf algebra 8 and extending Milnor’s Hopf algebra [13] structure the-
orems from the prime field F, to an arbitrary Galois field. It should be emphasized that this
requires no new ideas, only a careful redoing of Milnor’s proofs avoiding reference to algebraic
topology and cohomology operations, and carefully replacing p by ¢ where appropriate.

8 One quick way to do this is to write down as comultiplication map
vieh= Y vew, k=12...

t+j=k

and verify that it is compatible with the Bullett-Macdonald identity, and hence also with the Adem-Wu relations.
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PROPOSITION4.1: Let p be a prime integer, ¢ = p¥ a powerof p, and F, the Galois field
with g elements. Then the Steenrod algebra of B, is a cocommutative Hopf algebra over F,
with respect to the coproduct

V.F — P
defined by the formulae _
vt =S fed, k=12,....

i+j=k

PROOF: Consider the functor V ~~ F,[V] ® F,[V] that assigns to a finite dimensional
vector space V over F, the commutative graded algebra F,[V] ® R,[V] over Fy. Thereisa
natural map of algebras

P ® F — End(V ~ R [VI@F,[V])

given by the tensor product of endomorphisms. Since thereisan isomorphism Fq[V]®F,[V]=
F,[V @ V], that is natural in V, the functor End(V - F,[V]®F,[V]) isa subfunctor of the
functor End(V ~ B,[V]) that assigns to a finite dimensional vector space V over B, the
polynomial algebra F,[V]. Hence restriction defines a map of algebras

F*— End(V ~F [VI®F,[V]
and we obtain a diagram of algebra homomorphisms
PP
2 % End(V v F,[VI®F[V])
What we need to show is that Im(p) & Im(7), for since T is monic V = 'r“lg would define
the desired coproduct. Since P* for k=1,2,..., generate & it is enough to check that

p(ka) e Im(7) for £ =1,2,..., . But this is immediate from the Cartan formula. Since V is
a map of algebras the Hopf condition is satisfied, so 2" is a Hopf algebra. U

If J is an admissible index sequence then

e(J) ='ZUS — @Jjs+1)
s=1
is called the excess of J . For example, the sequences

M, =(qk'1,..., g,1), 2=1,2,::

are all the admissible sequences of excess zero. Note that

k
deg(EPM") = qu'j(q wy=g® 1, for k=12, v
J=1
Recall by Corollary 3.3 that the admissible monomials are an F, -vector space basis for 2",

Let £.(B,) denote the Hopf algebra dual to the Steenrod algebra 2"(F;). We define §;

2.(B,) to be dual to the monomial PMr = 9" .. 97 . P with respect to the basis of admis-
sible monomials for #°. This means that we have:

<97 | &> = {1 if 7 = My,

-0 otherwise,

where we have written <& | £> for the value of an element ¥ € Z°(Fy) on an element
£ € P.(F,). Note that deg{ék)-_-qk—l for k=1,...,.
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If I =(iy,is, .‘.., It,...) is an index sequence we call £ the length of I, denoted by £(I),
if i =0 for £ > £, but i&#O. We associate to an index sequence I = (iy, ig,..., I},...) the

element ¢/ = gi‘ . 5;2--'51; e P.(Fy), where £ = £(I). Note that

&I

deg(¢1) = is(g® - 1.

s=1

To an index sequence I = (i1, i3,..., i,...) We also associate an admissible sequence J(I) =
(G1,J2,---» Ja,...) defined by

o = >
(@) 1= 6sq% Ja=) 0, Jh=) isgth
s=1 s=2 s=k

It is easy to verify that as I runs over all index sequences that J(I) runs over all admissible
sequences. Finally, note that deg(ﬂ"m)) = deg(¢!) for any index sequence I.

The crucial observation used by Milnor to prove the structure theorem of #.(F,) is that the
pairing of the admissible monomial basis for *(,) against the monomialsin the £ is upper
triangular. To formulate this precisely we order the index sequences lexicographically from
the right, so for example (1,2,0,...) <(0,0,1,...).

LEMMA 4.2(J. W. Milnor): With the preceding notations we have that the inner product
matrix <$/D | ¢K> is upper triangular with 1s on the diagonal, i.e.,

<01 %> (3 12K

PROOF: Let the length of K be £ and define K' = (kq, kg,..., k
K=K g e 2B,
If V denotes the coproduct in #°(F,), then we have the formula
(+) <PID| eE> =<PTP | K¢, > = <v@' D) | K 0 ¢, >
If JUI)=(1,j2,---5 J&,---) then one easily checks that
v’ D= Y 97 e9”.

2-1)5 SO

J'+J" =J(I)
Substituting this into () gives
=) KPP eE>= T <97 | > <97 | g,>
J'+J"=d(I)

By the definition of ¢, we have

<97 | ¢ >={1 if J" = M,,
£ 0 otherwise.

If J' = M, then unravelling the definitions shows that J' = J(I'), for a suitable I', so if K
and I have the same length £, we have shown :

<g)J(I) I EK> = <EPJ(I') ] éK'>’
and hence it follows from induction over the degree that

PID | ¢K ={1 ifl =K,
< |$ e 0 ifI <K.

If, on the other hand, £(I) < £ then all the terms
L | £ >

in the sum (%) are zero and hence that <#7" | ¢€> =0 as required. O
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THEOREM4.3: Let p be a prime integer, g = p¥ a power of p, and B, the Galois field
with q elements. Let P.(B,) denote the dual Hopf algebra to the Steenrod algebra of the
Galois field B, . Then, as an algebra

P =Byler, .., Enren il
where deg(¢,) = ¢* — 1 for k e N. The coproduct is given by the formula

Vi)=Y EF @8, k=12....
i+j=k
PROOF: By Milnor’s Lemma (Lemma 4.2) the monomials {£7} where I ranges over all
index sequences are linearlyindependent in Z.(F;). Hence F, (€10, &py- - ] E Pu(Fy). But
P.By) and Fgléy,..., &k, -- .] have the same Poincaré series, since deg(EPJm) = deg(§ Iy for

all index sequences I, and the admissible moniomials P7D are an IR, -vector space basis for
P'(Fy). So Fyléy,..., £k, -..1= Pu(By), and it remains to verify the formula for the coproduct.

To this end we use the test algebra B, [u], the polynomial algebra on one generator, as in [13L
Note that for admissible sequences we have

(%) P (u) = { ud" if J =My,
0  otherwise.

Define the map

A" Bglul — Fylul ® 2.
by the formula

ANwh=Y 2" Puhed!
where the sum is over all index sequences I . Note that in any given degree the sum is finite
and that \* is a map of algebras. Moreover

A" @ DA () =(1® VA (u),

i.e., the following diagram

F, (1] ® 2.0F,) ® Zu(F,) — Fylul® 2.

© ATel R
F,lul® #. > — Folul
is commutative.
From (%) it follows that
N =Y u’ ek
which when raised to the g” -th power gives
At(ur) - Z uqk+r ® sgf,
and leads to the formula

Ao W)=\ e1)(due )= u? @ £4" @ 4.
k r k

Whereas, the other way around the diagram © leads to
1® V)N @)= u? ® Vulés),

J

and equating these two expressions leads to the asserted formula for the coproduct. [l
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As remarked at the end of the previous Section the operations ¥* for i >0 are indecompos-
ables in #*, so " is not generated by the operations $? for i >0; we need all the $*

for i > 0. This ¢an be readily seen on hand from the dual Hopf algebra, where, since F; has
characteristic p, the elements £ f " for i >0 are all primitive, [{14]. The following Corollary

also indicates that passing from the prime field F, to a general Galois field F, is not just a
simple substitution of g for p.

COROLLARY4.4: Let p be a prime integer, ¢ = p¥ a power of p, and F, the Galois field
with g elements. The indecomposable module Q(Z?") of the Steenrod algebra of Fq has a
basis consisting of the elements $? " for i e Ny, and the primitive elements P(&") has a basis
consisting of the elements $* for k € N, where, for k € N, P s dual to ¢, with respect
to the monomial basis for . . U

§5. The Milnor Basis and Embedding one Steenrod Algebra in Another

If I =(iy,is,..., ip,...) is an index sequence we denote by $(I) € &*(F,) the element in the
Steenrod algebra that is dual to the corresponding monomial ¢7 in £.(F;) with respect to
the monomial basis for #.(,). This is not the same as the monomial Pl=gphr. ...
these two elements do not even have the same degrees. As I ranges over all index sequences
the collection £(I) ranges over an F, -basis for &2*(F,) called the Milnor basis.

To give some examples of elements written in the Milnor basis introduce the index sequence
A which has a 1 in the k-th position and otherwise 0s. Then P* is P(kA,), and, as noted
at the end of Section 4, the Milnor primitive elements 9% = @(A;), for k>0, form a basis
for the subspace of all primitive elements. In terms of the reduced power operations these
elements can also be defined by the inductive formulae

1 .
P = {EP ) ifk=1
(97" 98] for k>0,

where [#', ?"'] denotes the commutator & -9 -¢" -9’ of ¢’ and ¥ . In Milnor’s paper one
can also find a formula for the product $(I) - $(J) of two elements in the Milnor basis. The
basis transformation matrix from the admissible to the Milnor basis and its inverse is quite
complicated, so we will say nothing more about it.

To each index sequence I we can make correspond both an admissible sequence over F, and
one over F, via the equations (¢) from the previous Section. This correspondence gives us a
map ¥ : F(Fy) — F'(F,) ®p, Fy -

THEOREM5.1: Let p be a prime integer, q = p¥ a power of p, and F, the Galois field
with q elements. The map

9 : F(F,)— F'F,) @, F,

embeds the Steenrod algebra &"(By) of B, as a Hopf subalgebra in the Steenrod algebra of
F, extended from F, up to F,.

PROOF: It is much easier to verify that the dual map
1.9: 3 g*(IFp) ®']Pp ]Fq = ?s(IFq),
which is defined by the requirement that it be a map of algebras, and take the values

= ¢m(q) ifk =mv(sopk—1=qm_1)
el @ { 0 otherwise,

on algbera generators, is in fact a map of Hopf algebras. This is a routine computation. [

The Steenrod algebra over the prime fleld B, has a well known interpretation as the mod p
cohomology of the Eilenberg - MacLane spectrum. By flat base change F(Fp) @p, Fq may
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be regarded as the F, -cohomology of the same. By including the Eilenberg - MacLane spec-
trum K(F,) for the prime field into the Eilenberg - MacLane spectrum K(B,) we may view
the elements of &*(F,) ®g, F, as defining stable cohomology operations in F, -cohomology.
By Theorem 5.1 this also allows us to interpret elements of &"(F,) as stable cohomology op-
erations acting on the F, -cohomology of a topological space. Which elements appear in this
way is described in cohomological terms in [24].

§6. Closing Comments

Algebraic topologists will of course immediately say “but that isn’t the Steenrod algebra, it is
only the algebra of reduced power operations; there is no Bockstein operator unless g = 2.”
This is correct, the full Steenrod algebra, with the Bockstein, has not yet played a significant
role in invariant theory, so I have not treated it here. But, if one wishes to have a definition
for the full Steenrod algebra in the same style as the one presented here, all one needs to do
for g # 2 is to replace the functor V ~~ F[V] with the functor V ~~ H(V), where H(V) is
defined to be H(V) =F[V] ® E[V], with E[V] the exterior algebra on the dual vector space
V* of V. Since V* occurs twice as a subspace of H(V), onceas V*®F  F[V]®F and once
as F® V* = E[V], we need a way to distinguish these two copies. One way to do this is to
write z for a linear form z € V* when it is to be regarded as a polynomial function, and dz
for the same linear form when it is to be regarded as an alternating linear form. This amounts
to identifying H(V) with the algebra of polynomial differential formson V.

Next introduce the Bockstein operator 8 : H(V)— H(V) by requiring it to be the derivation
where, for an alternating linear form dz one has §(dz) = z, where z is the corresponding
polynomial linear form, and for any polynomial linear form z one has §(z)=0. The operators
P* for k e N, together with 8 generate a subalgebra of the algebra of endomorphisms of the
functor V ~~ H(V), and this subalgebra is the full Steenrod algebra of the Galois field Fq .

Finally, at the summer school T.P. Bisson spoke about his work with A. Joyalon a universal al-
gebra approach to both the Dyer-Lashof algebra and the Steenrod algebra [4]. The interested
reader should consult this paper which contains many informative facts.
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This course of lectures will make intelligible a number of problems, listed in
the last section, concerning the action of the Steenrod algebra on polynomials.
The subject matter is rather technical but we shall try to indicate how some of
the problems fit into the wider context of algebraic topology and invariant theory.
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The first section introduces the hit problem in a general algebraic setting for
graded left modules over a graded ring with a right semigroup action. A couple
of examples from topology and invariant theory illustrate the ideas. Then we
restrict attention to the main example which is to do with the Steenrod algebra
A at the prime 2 acting on the polynomial algebra P(n) = Fs[z1,...,Z,] in n
variables z; over the field F; of two elements, with the right action of the matrix
semigroup M (n,Fs).

The next section describes recent joint work with Ali Janfada on hit problems
for symmetric polynomials.

In the third section we explain some interconnections between modular rep-
resentation theory of the semigroup algebra Fo[M (n, Fs] and the splitting theory
of the stable types of the classifying spaces of certain groups. We describe some
recent work with Grant Walker on the Steinberg representation and more general
questions about the linkage of first occurrences of irreducible representations via
Steenrod operations in the polynomial algebra.

In the fourth section the scope of the investigation is extended to the differ-
ential operator algebra D, as the ring of operators, which is the natural setting
for studying hit problems over the integers and at odd primes. We refer to [49]
for a fairly extensive bibliography concerning the action of the Steenrod algebra
on polynomials.
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1 The hit problem

For any graded left module M over a graded ring R with unit, we write M¢ for
the elements of grading d. An element f € M¢ is called hit if it can be written

as a finite sum
F=Y 6fi

where the elements ©; belong to R and the f; are homogeneous elements in M of
grading strictly less than d. We refer to this representation of f as a hit equation.
The hit elements form a submodule N of M. The quotient Q = Q(M) = M/N
is essentially a graded abelian group because the ring acts trivially. A minimal
generating set for Q lifts to a minimal generating set for M as a module over
R. For the sake of brevity we shall sometimes say that f is equivalent to g in
Q and write f = g when, strictly speaking, we mean f — g is hit in M and the
equivalence classes of f and g are equal in Q.

In particular we can view R = R as left module over itself. In this case a hit
element is traditionally called decormposable and the hit problem is then concerned
with writing an element of R as a sum of products of elements of lower grading.

For present purposes we concentrate on the restricted situation where our
modules are vector spaces over a fleld F, have no elements of negative grading
and are of finite type, which means that dim(M?¢) is finite for each d. We also
assume that R is a connected algebra over F, which means that Ry = F. Topo-
logical motivation for studying these objects is provided by the example of the
cohomology M = H*(X;F;) of a complex X of finite type over F, under the left
action of the Steenrod algebra A.

It is worth pointing out here how decomposability can sometimes be the last
stage in an argument requiring several intermediate steps of a geometric or topo-
logical nature. A famous example is the solution by Frank Adams of the problem
about non-singular multiplications on Euclidean space. Early pioneers in topol-
ogy translated the problem through geometry and topology into a question about
the cohomology ring of a certain topological space under the action of the Steen-
rod algebra. Without going into details at this stage, we note that A is generated
by elements Sq” called Steenrod squares in gradings r > 0 subject to certain rela-
tions. It turns out that all Steenrod squares in positive grading are decomposable
in A except when r = 2% for some k. It was this fact which first led Adem to a
proof that non-singular multiplications on Euclidean space R™ cannot exist for
dimensions other than n = 2°. By extending the notion of decomposability into
the broader context of ‘secondary’ operations Adams succeded in decomposing
Sg** for k > 3, thereby proving the long oustanding conjecture that non-singular
multiplications on Fuclidean space can only exist for n = 1,2,4,8, where they
are realised by real, complex, quaternionic and Cayley multiplication.

We shall be concerned in this course with a number of related questions.
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Problems 1.1 1. Find a criterion for f € M¢ to be hit.
2. Find a minimal generating set for M or, equivalently, a basis of Q.
3. When is the dimension of Q% equal to zero?

4. Is the dimension of Q% bounded independently of d?

The hit problem can be enhanced by introducing a right action of a group
or semigroup I' on the module M compatible with the left action of R. To be
precise, we suppose that each M¢ is a right representation of I' and for each
© € R! the left linear map ©: M? — M9 is a map of right I-modules. For
© € R,z € M,n € T we can write ©z7 unambiguously. Hit problems then
receive an equivariant flavour. For example, the quotient Q becomes a graded
representation of I'. We can also study hit problems for the fixed point set ML
as an R-submodule of M. More generally, we can examine the decomposition
of M into summands afforded by idempotents in the semigroup algebra of T
Each such summand is then an R-submodule of M and the investigation of hit
problems for these summands is intimately related to the modular representation
theory of I over the ground field F. In the case of the Steenrod algebra and the
matrix semigroup, there are also topological implications to do with the stable
splitting of classifying spaces.

So we study the case where I' = M(n,F;) is the semigroup of n x n matrices
A = (a;;) over F, acting on the right of P(n) by linear substitution of variables,

;A = E Qig Ty
s

In this case, I contains the subgroup of non-singular matrices GL(n,F2), which
in turn contains the symmetric group X, consisting of matrices with a single non-
zero entry in each row or column. The action extends to the ‘rook’ semigroup
of all matrices over F, with at most one non-zero entry in each row or column.
Let B(n) = P(n)® be the ring of invariants, in other words the symmetric
polynomials in P(n). It turns out that the Steenrod squares commute with
the action of M(n,F;), in particular with ¥, and GL(n,F;). This raises some
interesting hit problems in B(n), and in the Dickson algebra D(n) = P(n)GL™F2),
Before embarking on the main topic, we consider a hit problem in which the
ring of invariants plays a different role, this time as the ring of operators R rather
than the module acted on. The example is taken from Larry Smith’s book on
invariant theory [37], recouched in the language of an equivariant hit problem.

Example 1.2 Let M = Q[z1, - -, Z,] be the polynomial algebra over the rationals
in n variables. Let T, act on the right of Ml in the usual way. Take for R the ring
of symmetric polynomials in M acting on the left of M by the usual multiplication
of polynomials. Clearly the R-action commutes with the X, action.
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For this example we can answer some of the questions posed in Problems 1.1.

1. All homogeneous polynomials of degree greater than n(n — 1)/2 are hit.

2. A basis for Q consists of the n! monomials zi'zy - -- 2,77, where 0 < LT

3. In fact Q is a graded version of the regular representation of .

For example, in the case n = 3, the monomials

1,21, 22,22, 22, T2Zo

generate Q. From elementary representation theory, it is known that the three
irreducible representations of £3 over the rationals must appear in Q with multi-
plicity equal to their dimension. Indeed, the trivial representation appears once,
generated by 1 in grading 0. The sign representation appears once, generated by
r2z, in grading 3, and the irreducible 2-dimensional representation of X3 appears
twice, generated by z1, 7, in grading 1 and by z?, 3 in grading 2. Every homo-
geneous polynomial f of degree at least 4 is hit; in other words, it can be written
in the form

= 0, + Bz + Osx0 + 94933 + 65.’23 + @512%.’172,

where the ©; are symmetric polynomials of positive degree.

This example has some special features which will not apply in general. For
example, the product of a hit element by a polynomial is also hit because the ring
of operators commutes with multiplication of polynomials. Hence the hit elements
form an ideal and Q is just the algebra of coinvariants [37] of the symmetric group.
We shall refer back to this example in the last section.

The algebras P(n) and subalgebra B(n) of P(n) are of particular interest
in topology because they realise respectively the cohomology of the product of
n copies of infinite real projective space and the cohomology of the classifying
space BO(n) of the orthogonal group O(n). This is the universal place for study-
ing Stiefel-Whitney classes of manifolds. Symmetric polynomials, divisible by
the product of the variables z1 - - - , also has a topological interpretation as the
cohomology M(n) = H*(MO(n),Fs) of the Thom space MO(n) in positive di-
mensions. Thom spaces are important in studying the immersion and embedding
theory of manifolds.

1.1 The action of the Steenrod algebra on polynomials

In this section we explain how Steenrod squares act on polynomials and state
some facts about the hit problem for P(n).

N.B. Throughout these lectures we adopt the non-standard convention of
writing numbers in reversed dyadic expansion. For example 0101 is the reversed
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dyadic expansion of the number 10. Dyadic positions are counted from 0 on the
left. It is customary to denote by a(d) the number of digits 1 in the expansion of
d. We call this the a-count of d. For future reference it should be noted that if 4
has a digit 1 in position k then a(d + 2*) < a(d) and there is strict inequality if
d also has a digit 1 in position k£ + 1 because of the carry forward effect of binary
addition.

Another numerical function that features frequently in this subject is u(d),
which is the least number £ for which it is possible to write d = ZLI(QE* —1).

The Steenrod algebra A is defined to be the graded algebra over the field
Fa, generated by symbols Sq*, called Steenrod squares, in grading k, for k > 0,
subject to the Adem relations [40] and Sq° = 1. For present purposes we need to
know that the Steenrod algebra acts by composition of linear operators on P(n)
and the action of the Steenrod squares S¢*:P¢(n) — P%*(n) on monomials
f,9 € P(n) is determined by the following rules [49].

Proposition 1.3 1. S¢*f = f? if deg(f) = k and S¢*f = 0 if deg(f) < k.
2. The Cartan formula qu(fg) = Zosrsk Sqr(f)qu—r(g)-

In principle these rules enable the evaluation of a Steenrod operation on any
polynomial by induction on degree.
The next results are elementary consequences of the rules in Proposition 1.3.

Proposition 1.4 Let f = zf*---1% be a monomial in P(n) and z o typical
variable.

1. 8q"(f) = Z'r1+---+rn=r Sq™ (g;tlil) oo Sqr (g,

2. Sq"(z%) = 0 unless, for each position j where there is a binary digit 1 of
there is also a binary digit 1 of d in position j. In this case Sq"(z?) = =™+
In particular, S¢ (z?) = 22" +¢ if and only if d has a digit 1 in position k.

3. The power z" is in the image of a positive Steenrod square if and only if r
15 not of the form 2¢ — 1.

4. If r is odd then Sq"(f?) = 0, whereas Sq*"(f?) = (Sq"(f))?. Consequently
the action of the Steenrod algebra on P(n) is ‘fractal’ in the sense that

a copy of the algebra acts on squares of polynomials by duplication of the
suffices of the operators.

5. Steenrod squares commute with the right action of the symmetric group L.,
which permutes the variables z1, ..., Z,.

6. Steenrod squares commute with the right action of the full semigroup of
n X n matrices acting by linear substitution in the variables [{9].
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Itemn 5 explains algebraically why B(n) is a submodule of P(n). Item 6 is a
stronger statement and explains why the Dickson algebra D(n) is a module over
A. There are topological reasons why B(n) and M(n) are modules over the
Steenrod algebra because these are cohomology algebras of certain topological
spaces. For D(n), however, this is not the case if n > 5 [38]. So invariance of
D(n) under A is an algebraic bonus. We shall say more about this matter in
section 3.

We recall {49] that a monomial gt -+ -z~ is called a spike if every exponent d;
s of the form 2¢ — 1. It follows from items 1,3 of Proposition 1.4 that a spike can
never appear as a term in a hit polynomial in P(n) when written irredundantly.
Hence the spikes must always appear In any set of minimal generators of the
module P(n).

There are a few deeper facts about the Steenrod algebra which are needed
later to analyse the hit problem. A string of Steenrod squares

qulsqu ___qut

of length ¢ > 1. is called admissible if k; > 2k;yq for 1 < i < t. This includes all
Sq¢* as admissible for i > 0.

Proposition 1.5 As a vector space, A is generated by the admissible strings of
Steenrod squares.

Also important for hit problems is the following result already referred to earlier.

Proposition 1.6 As an algebra, A is generated by the Steenrod squares Sq?* for
k=0

In the first place a hit equation for f € P(n) has the general form F=5.51
where the elements ©; € A have positive grading, but because the 5S¢t generate
A there must then be a hit equation of the form f = 3_,.,5¢’g; and, in the light
of Proposition 1.6. f will also satisfy a hit equation of the form

=Y 5¢h,
k>0

where f;, g;, hx are homogeneous elements of P(n).
The Steenrod algebra is a Hopf algebra with diagonal defined by

W(Se*) = > Sq' ®Sq".
0<i<k

It then admits a conjugation operator x, which is an anti:automorphism of order
9. For an element © € A we use the notation x(©) = ©. Conjugation satisfies
the recursion formulae

k
> Sq'Sg*— =0,

i=0
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for £ > 0, from which it is possible, at least in principle, to work out 5&2 in terms
of Steenrod squares by induction on %.
The following formulae are useful for handling conjugate squaring operators.

Proposition 1.7 There is a conjugate Cartan formula

S (fa)= Y. 5q(f)Sd(g)

0<r<k

and evaluation of a conjugate square on powers of a single variable is given by

2m : m k
2y _ 2, frp=2m 2% m >k,
S¢(e”) { 0, otherwise.

As with Steenrod squares themselves, these formulae enable the evaulation of
a conjugate operation on any polynomial by induction on degree.
The next result plays a major role in solving hit problems [12, 13, 49].

Proposition 1.8 Let u,v denote homogeneous elements in P(n). Then
uSg*(v) - SF(w)v = Y_ S¢'(uSg*= ().
i>0

An immediate consequence, known as the x-trick, is that uSq®(v) is hit in
P(n) if and only if Sg*(u)v is hit in P(n). By iterating the formula of Proposition
1.8 on compositions of Steenrod squares and using linearity, we obtain a more
general statement.

Proposition 1.9 Let u,v denote homogeneous elements in P(n). Then, for any
© € A, there is a hit equation of the form

uO(v) ~ B =) 5¢ (Zeﬂ

>0

for certain elements ©;, ®; € A. In particular we have the equivalence u©(v) =
O(u)v in Q(P(n)).

The ezcess of an element © in A is defined as the smallest positive integer s
such that ©(z;z2- - - z,) # 0. The following result goes back to Milnor [30, 35, 49].

Proposition 1.10 The ezcess ofg“q“’hc is u(k).

This result has been improved in [26, 35].

Theorem 1.11 The ezcess of @@d c+ . SqeTtd G2 g (2% — 1) u(d).

From 1.8 and 1.11 we obtain the following corollary [35, 49].
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Theorem 1.12 Let f = w2 be a monomial in P(n) and suppose deg(u) <
(2F — 1)u(deg(v)). Then f is hit.

To prove this statement, we write
@ = Sq'.!"—ldsq?k"zd L. ngdSqd

and observe that v2° = O(v) where d = deg(v). The x-trick of Proposition 1.9
and Theorem 1.11 then complete the argument.

1.2 Binary blocks and order relations

As an intuitive aid to understanding many of the processes involving the action of
Steenrod operations in P(n) it is useful to exhibit a monomial f as a binary block
of digits 0 or 1 [8]. This means the matrix whose rows are the reversed binary
expansions of the exponents of the variables z1,...,Z, in f. We shall adopt the
convention of denoting a monomial by a lower case letter and its binary block by
the corresponding upper case letter. For example, the monomial f = z2a3 is
represented by the binary block

F=

— O
O =

1

Normal matrix notation will be used, except that the columns are counted from 0
to be consistent with 2-adic exponents. It should be noted in particular that the
juxtaposition of two blocks UV corresponds to the monomial wv?®, where k-1
is the position of the last column of U. The double suffix notation Fl; ) refers to
the entry of the binary block F in row i and column k. It is the digit in position
k of the reversed binary expansion of d; in the monomial f = a:‘fl co.xdn. We
shall occasionally use the notation F;) to refer to row i of F.

There are several ways of ordering monomials of P(n) to be compatible with
the action of the Steenrod algebra. The order relation used in [8, 49], called
the w-order, is defined as follows. Let w;(F) = >, Fi;; denote the sum of
the digits in column j of the binary block F. Now form the w-vector w(F) =
(wo(F), w1 (F),...,wk(F),...) and order such vectors in left lexicographic order.

The transpose of the w-order, which we shall call the a-order, is defined
as follows. For a block F the a-counts of the rows of F' are arranged as the
components of a vector in non-decreasing order of magnitude from left to right.
Such a-vectors are then compared lexicographically. This process defines the
a-order relation on monomials and is again symmetric in the variables. For
example, if the smallest a-count of the exponents in the monomial f is less than
the smallest a-count of the exponents in the monomial g then f <, g. If these
numbers are equal we look at the next smallest and so on.
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The following statement explains the compatibility of the action of the Steen-
rod algebra with the order relations and is an easy consequence of items in Propo-
sition 1.4.

Proposition 1.13 Any monomial produced by the action of any positive element
in the Steenrod algebra on a monomial f has strictly lower w-order than that of
f and no greater a-order.

We shall say that a monomial f is w-reducible if there is a hit equation of the
form
Fe=g= Z ©:fi,

for positively graded elements ©; € A, where the w-order of every monomial in
g is lower than the w-order of f. There is a similar definition for the a-order
relation.

In the next couple of propositions the x-trick is used to show how in certain
situations the w-order of a monomial can be reduced. Statements are sometimes
more transparent when phrased in the language of binary blocks.

Proposition 1.14 Let F = UV be a binary block corresponding to a monomial
f=w? in P(n), where k — 1 is the last column position of U. Suppose that v
is hit. Then F is w-reducible in P(n). In fact the w-vector of the reduction can
be assumed to be reduced in some position prior to k.

To prove this result formally we first write
v=> 6if:)

for elements ©; of positive grading in the Steerod algebra and polynomials f; in
P(n). We then appeal to the fractal nature of the Steenrod algebra as explained
in item 4 of Proposition 1.4 to write

’U2k _ Z‘i’;(ffk),

where the ®; are constructed from the ©; by iterated duplication of suffices in
compositions of squaring operations. Then by the x-trick of Proposition 1.9 we
obtain the equivalence

w” =) udi(fF) =) (Ba)ff

Finally we apply Proposition 1.13 to see that the the w-order of every monomial
in @;u is lower that the w-order of u, indeed in a position prior to k. It follows
that all monomials in (®;u) f2* have w-order lower than f as required.

We shall sometimes paraphrase proofs of this kind by saying simply that
F = UV is reducible because V is hit.

The following result is an immediate corollary.
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Proposition 1.15 Let F be a binary block with a zero column in position k,
but with a non-zero column in some higher position. Then I is w-reductble.
Furthermore the reduction may be taken with no higher a-order than that of F.

To demonstrate this result, suppose that the first zero column of F occurs at
position k. Then split the block F'= UV vertically between positions & — 1 and
k. as in the previous proposition, where now the first column of V is zero. Then
V is a perfect square and therefore hit. Proposition 1.14 completes the argument
as far as reduction is concerned. The hit equation for V effectively moves all
columns of V back one place, which does not change the a-count of the rows of
V. An appeal to Proposition 1.13 finishes the proof.

1.3 Results for P(n)

We shall now list a number of results about the hit problem for P(n) in answer to
some of the questions posed in Problems 1.1. Most of these results are well known
and can be found in various sources [1, 2, 8, 11, 22, 23, 31, 32, 34, 36, 44, 45, 46,
47, 49]. It should be mentioned a this point that we are taking the ‘cohomology’
approach to the hit problem. For the alternative ‘homology’ approach, we refer
to [1, 11], where the problem is treated in terms of kernels of the adjoint action
of Steenrod squares.

The solution of the Peterson conjecture [46, 47, 49] gives the following answer
to question 3 of Problems 1.1.

Theorem 1.16 The quotient space Q*(P(n)) is zero if and only if u(d) > n.

To prove this result we note first of all that in degree d, when p(d) < n, there
is a spike which shows that the dimension of Q*(P(n)) is non-zero. In the other
direction, when p(d) > n, consider splitting a block F' = UV between column
positions 0 and 1. Then d = degU +2deg V. It can be seen that u(deg(V)) >
deg(U), otherwise we would be able to write

deg(U)
deg(V) = 3 (2 - 1),
i=1
in which case
deg(U)
degU +2degV = Z [2e — 1),
i=1

contradicting u(d) > n, since degU < n. The result now follows from Theorem
1.12 in the case k = 1.

An answer to the second and fourth question in 1.1 can be found in in [22,
23, 8] for low values of n. The first three questions in 1.1 are answered in detail
by classification results for hit monomials in P(2) and P(3), which can be found
in Kameko's thesis [22] and more recently in Janfada’s thesis [21].
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Theorem 1.17 The dimension of Q¥(P(n)) is bounded independently of d for
all n. The best bounds for n = 1,2,3 are respectively 1,3, 21.

Kameko conjectures that the best bound for the case of P(n) is (1)(3) - - - (2" —1).
The following table, taken form [22, 2], shows the dimensions of Q%(P(3)) in
terms of d.

Theorem 1.18 The dimension of Q%(P(3)) is zero unless d = 25T1T% 4 2!+ 4
2v — 3, where s > 0,t > 0,u > 0. In this case the dimension is independent of u
when u > 0 and depends on s,t as follows.

dim g =1 u>0
QiP@B3)) | s=0|s=1]|s=2]|s=3|s=4|s>4
=0 1 3 7 10 13 14
t=1 3 8 15 14 14 14
t=2 6 14 21 21 21 21
t>2 7 14 21 21 2l 21

The following result [8] provides a set of generators for P(n) as an .A-module but
is not minimal.

Theorem 1.19 The A module P(n) is generated by monomials z7* - - - " where,
up to permutation of the variables, a(e; + 1) < 1.

This result leads to a proof of Theorem 1.17 [8] . We quote one final result [36]
in this section which narrows down the scope of a minimal generating set and
refines Theorem 1.16.

Theorem 1.20 If a monomial in P%(n) has w-order less than that of a minimal
spike in degree d, then f is hit. A generating set for P(n) can be chosen from
monomials whose w-order is between that of a minimal and mazimal spike in any
degree.

There are degrees for which there is only one spike up to permutation of the
variables. In such degrees d it can be verified that the dimension of Q4(P(n))
is bounded by the product 1(3)---(2® — 1) and a generating set can be written
down. The difficulty in proving the Kameko conjecture in general seems to be in
degrees where there are spikes of various w-orders.
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2 The symmetric hit problem

An element 7 in the symmetric group £, acts on the right of a polynomial
f € P(n) by permuting the variables and the action is clearly multiplicative l.e.
(fg)m = (fr)(gm) for two polynomials f,g € P(n). A hit equation in B(n) may
always be taken, when convenient, in the form of a finite sum

o= Z ngkbi,

k>0

where a and the b; are symmetric polynomials.

As we shall explain in the next section, B(n) is generated additively by the
symmetrised monomials. The w-order and a-order are symmetric in the variables
and apply therefore to monomial symmetric functions in B(n).

2.1 Symmetrisation

Given a monomial f in a subset of the variables zi,...,Zn, We can form the
symmetrisation of f which means the smallest symmetric function o(f) in B(n)
containing f as a term. To be more precise, let my,---, ™ be a set of left coset

representatives for the stabiliser of the monomial f in X,. Then o(f) = S [
For example, if the exponents of the variables z,,...,z, in f are all distinct then
the stabiliser of f is trivial and o(f) = Y, fm, where the summation is taken
over the whole of ¥,. This is the classical transfer of invariant theory. At the
other extreme, if all exponents of f are the same then the stabiliser is the whole
of &, and o(f) = f. If m,---, 7 are left coset representatives for a subroup
of the stabiliser of f it is still true, of course, that Z;=1 fm; is symmetric but
the expression may be zero. It should be emphasised that the meaning of a(f)
depends on the set of variables over which symmetrisation is taking place. For
example o(z;) means ; +z2 in P(2) but z; +z5+z3 in P(3). The symmetrised
monomials form a vector space basis of B(n). In recent literature on invariant
theory [37] the symmetrisation operator ¢ is referred to as the first Chern class.

What we would like to do is convert hit equations in P(n) into hit equations
in B(n) by symmetrisation. The following example shows that a naive approach
to this problem does not always work.

Example 2.1 In P(2) we have the hit equation
r2rl = Sqt(z,73).

If we symmetrise this equation we obtain

0= Sql(:rlzng =+ $:12.’172)
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because we are working modulo 2. So we cannot prove this way that Tiz3 is
symmetrically hit. But, as it happens, there is a symmetric hit equation in B(2)
namely

S¢*(2122) = ziz3,

which shows that z2z3 is indeed symmetrically hit.

It is this phenomenon which prompts the questions raised in Problems 5.7 about
whether the symmetrisation of a hit monomial in P(n) is symmetrically hit.
There are examples of monomials which are not hit in P(n) but whose symmetri-
sations are hit in B(n). There are also examples of polynomials in B(n) which
are hit in P(n) but not symmetrically hit in B(n).

However, there are circumstances in which we can symmetrise hit equations
in P(n), based on the following observation.

Proposition 2.2 Let f be a monomial and g a polynomial in P%(n). Suppose
there is a hit equation

f—g= Z ©; fi
in P4(n), satisfying the condition that the stabiliser of f is a subgroup of the
stabiliser of g and a subgroup of the stabiliser of each polynomial f;. Letmy,...,m

be a collection of left coset representatives for the stabiliser of f in the symmetric

group ¥,. Then
o(f) - Zgwg Ze me

Jj=1

is a symmetric hit equation in B(n).

The reason is that o(f) is equal to Z;=1 fm; by definition, and the expressions

Zgﬁji Zfzﬂ'g

7=1
are symmetric by our earlier discussion about stabiliser subgroups. Under the
given conditions we have the equivalence o(f) = 23.:1 gm; in Q(B(n)).
2.2 The symmetrised y-trick

We now develop some useful symmetric hit equations by exploiting Proposition
2.2

Proposition 2.3 If the exponents of a hit monomial f in P(n) are all distinct.
Then o(f) is symmetrically hit.
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In this case o(f) is the transfer of f and the stabiliser of f is the trivial group.
The conditions of Proposition 2.2 are obviously satisfied with g = 0.
We can form a symmetrical version of Proposition 1.14

Proposition 2.4 Let f = w? be a monomial in P(n), with w;(u) = 0 for
j > k. Assume that u is symmetric and that o(v) is symmetrically hit. Then
o(f) is symmetrically w-reducible in B(n). In fact the w-vector of the reduction
can be assumed to be reduced in some position prior to k.

To prove this result we note first of all that o(f) = uo(v?") because u is sym-
metric. Since o(v) is symmetrically hit, the argument in the proof of Propostion
1.14 goes through when applied to o(v) in place of v, maintaining symmetry at
each stage.

We continue with a symmetric analogue of Proposition 1.9.

Proposition 2.5 Let f = uv be a monomial in P(n) with the property that the
stabiliser of f also stabilises u and v separately. Let m1,..., 7 be a collection of
left coset representatives for the stabiliser of f in the symmetric group Zn. Then
for any element © € A there is a symmetric hit equation in B(n) of the form

t t

S (we))m; - Z(é(u)’u)ﬂ'j =5"5¢ 3" (Bu(w)@a(v))m;,

=1 >0 i=1
for certain elements ©4, y € A. In particular we have the equivalence

t t

S (wOw))m; 2> (B(u)v)m;

=1 =1

in Q(B(n)).

The proof follows immediateley from Propositions 1.9 and 2.2. We apply this
result to obtain the symmetric analogue of Proposition 1.12.

Theorem 2.6 Let f = wv® € P(n) be a monomial and suppose deg(u) < (2F —
D u(deg(v)). Then o(f) is symmetrically hat.

To prove this statement, we first observe that the stabiliser of f also stabilises
u and v. Hence Proposition 2.5 applies to the choice

£ e quk-idsqzk-zd ... Sq*Sq¢,

where d is the degree of v. The rest of the argument follows the same pattern as
the proof of Theorem 1.12, noting that

o(f) =) (uO())m;



for the particular choice of coset representatives ;.

Before stating the next corollary, we need to make a few more remarks about
symmetrisation. Consider a monomial f in P(n) expressed in the form f = gh
where g involves only the variables zy,...,z, and h involves only the remaining
variables Zp.1, . . ., Tptq, Where p+g =n. Let us suppose also that no exponent in
the monomial g is equal to any exponent in the monomial A. Then the stabiliser
of f is a subgroup of the cartesian product X, x L, which permutes the first p
variables and last g variables separately. There is a set of left coset representatives
for the stabiliser of f of the form (p; x 7;)Cx, Where the p; run through a set of
coset representatives for the stabiliser of g in ¥, the 7; do the same for the
stabiliser of A in £, and the (i are the shuffle permutations which preserve the
orders of the two separate lists of variables z1,...,Tp, and Zpt1,...,Tprq- WE
then have the following lemma.

Lemma 2.7 The symmetrisation of f = gh in the n variables 1, ..., T 1s given
by
o(f) = 3(0 ()" (W))G,
k
where o', 0" denote symmetrisation in the subsets T1,...,ZTp and Tpi1,.- -, Tpiq

separately, and the (i run through the shuffles of the first set in the second set.

The next corollary may be viewed in terms of a horizontal splitting of a block.

Proposition 2.8 Let f = gh in P(n) be a monomial factorised such that g
involves only the variables z1,. .., T, and h involves only the remaining variables
Tpil,-- -, Tp+q, Where p+q=n. Assume also that no exponent in the monomial
g is equal to any ezponent in the monomial h. Suppose there is a symmetric hit
equation in B(q) of the form

=3 Qh,

for positively graded elements Q. in the Steenrod algebra. Then there is a sym-
metric equivalence in B(n) of the form

NEDIDICNCIC)) AN
k T

The proof of this result follows the line of argument in Proposition 2.5, once we
observe that the stabiliser of f must stabilise g and h individually because these
monomials have no exponents in common. We have

ZO’ Q h —Z( h +ZZSQ Z: zkr(u)®ik‘r(v))a

T r 1>0
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for certain elements Ok, Pt in the Steenrod algebra. Now all terms in this
equation are stabilised by the stabiliser of f. It follows that an application of the
shuffie operators {;, to both sides of the equation, and adding over k, produces a
symmetric hit equation. By Lemma 2.7 the left hand side becomes o(f) and the
result is established.

2.3 Results for B(n)

We now state answers to some of the basic Problems 1.1 about B(n) in parallel
with the corresponding answers for P(n). First of all, the Peterson conjecture
remains true for B(n), with the same condition as for P(n).

Theorem 2.9 The quotient space Q¢(B(n)) is zero if and only if p(d) > n.

The proof is an immediate consequence of Theorem 2.6 and the arguments used
in the proof of Theorem 1.16.

It should be emphasised what this result actual says. It follows immediately
from Theorem 1.16 that a homogeneous symmetric polynomial is hit in P(n) if its
degree d satisfies u(d) > n. It is not so obvious, however, why this should imply
that the polynomial is symmetrically hit in these degrees, in other words why it
should be hit as an element of the module B(n). It was only by constructing
the specially adapted hit equations that we were able to prove the symmetrised
Peterson conjecture. This leads once again to the more general questions about
symmetric hit elements posed in Problems 5.7.

For small values of n we have an analogue of Theorem 1.17.

Theorem 2.10 For n = 1,2,3, the best upper bounds for the dimension of
Q%(B(n)) are respectively 1,1, 4.

We ask in Problem 5.8 for a bound for the dimension of Q*(B(n)) in general and
some sensible upper estimate of it, analogous to the Kameko conjecture.

As far as minimal bases are concerned, the situation for n = 1 is straightfor-
ward since B(1) = P(1) and B(1) is generated by the spikes 1Ay

In the 2-variable case, the answer is also quite simple.

Theorem 2.11 The collection of symmetric functions

or_1_or—1 9s_1 9t—1 , 9t—1 29—
Ty Ty o, T I3 T +I i

?

forr >0 and s >t >0, forms a minimal generating set for B(2).

Theorem 2.11 indicates that the symmetrised spikes are enough to furnish a
generating set of the module in the case of two variables. The situation for three
variables is more complicated. We provide a table, by analogy with Theorem
1.18, showing the dimensions of Q?(B(3)) in degrees d where the dimensions are
NON-ZEro.
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Theorem 2.12 The dimension of Q*(B(3)) is zero unless d = 2°TH% + 2% +
2% — 3. where s > 0,t > 0,u > 0. In this case the dimension is independent of u
when s > 0 and depends on s,t as follows.

dim u=0 u >0
Q4B(3) | s=0|s=1[s=2[s=3]s>3
t =10 1 1 2 3 4
t>0 i} 1 2 2 2

The form of the degree d in the above theorem implies of course that p(d) <3
in accordance with Theorem 2.9. The next statement exhibits a list of minimal
generators for B(3).

Theorem 2.13 A minimal generating set for B(3) as a module over the Steenrod
algebra comsists of the symmetrised spikes together with the symmetrisations of
monomials z*z2z3 of three types.
=211 g=eg=2+2*""2_1  foru>0,s>2
=212 _1 e==22"T"1_2_1  foru>0,8>3
€ = —142uttteml o W] =2l 1 foru>0,6>0,5>1

The three types of monomials exhibited in Theorem 2.13 can be visualised in
terms of their binary block diagrams as exhibited below.

1 =11-= 11 1 -111
Ai=1 -10 —-101 Ao=1 - 1011 -1
1 - 10 -01 1 -1011-1
Il — 1L 0 =< 0080 =01
dg= T = 1 1 = 1
1 =1 1 = 1 1 =1

The first two monomials A;, Ay lie in degree 2%+ + 2¥*! — 3 for u > 0,s >
2, where there are also two symmetrised spikes. The third monomial Az lies
in degree 2uttts 4 9w+t 4+ 2% — 3 for u > 0,t > 0,s > 1, where there is just
one symmetrised spike. There are alternative sets of generators for B(3) which
serve various purpose. For more details on the classification of symmetrised
monomials into hits and non-hits, in answer to question 1 of Problems 1.1 we
refer to Janfada’s thesis [21].
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2.4 The submodules M(n)

We note that B(n) splits as a module over A into a direct sum of certain sub-
modules T(r) for r < n. To be precise

B(n) = @ T(r),
r=1

where T(r) is generated by the symmetrisation of monomials involving precisely
r of the n variables i, ... zn. One sees therefore that T(r) is isomorphic to M(r)
as a module over the Steenrod algebra and we deduce the following dimension
formulae.

Proposition 2.14 dim Q¢(M(n)) = dim Q4(B(n)) — dim Q¥(B(n — 1))
dim Q4(B(n)) = >_r_, dim Q4(M(r)).

There are topological problems [39, 29] associated with these algebraic statements
that we shall discuss later.
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3 Modular representations and hit problems

As general references for this section we cite 3, 15, 16, 17, 27, 28, 44].
There are 2" distinct irreducible modular representations of M(n,F3) over the
natural field F», parametrised by sequences of non-negative integers

A=A 2Z2A2... 2220,

subject to the constraints A; — Aiy1 < 1for1 < ¢ <nand A, <1, called 2-
column regularity. The irreducible representations of GL(n,[F;) correspond to
those A with A, = 0.

In the literature on the representation theory of symmetric groups and general
linear groups, the sequence A is usually referred to as a partition of length n of
the number |A| = A, + Ao + - - + A, and depicted by a Ferrers diagram, which is
a matrix with a mark at each position (4, 7) for 1 < 7 < A;, and other positions
empty. The non-empty positions are called the ‘nodes’ of the diagram. The
transpose of the Ferrers diagram of ) corresponds to the conjugate sequence X',
where ), is the number of rows k such that Ax > i. The sequence X is again
a partition of |A] = |X| but does not necessarily correspond to an irreducible
representation of M (n,Fy). If X is 2-column regular, then X' is strictly monotonic.
Such sequences are also referred to in the literature as 2-regular. For example,
the diagram of A = (3,3,2,2,1) and its transpose are shown below.

1
1

(PR

N =

>
Il
L
— =
N
—

The nodes of a Ferrers diagram are sometimes replaced by squares in which other
information is inserted.

The empty diagram corresponds to the trivial representation of M(n,F2),
where every matrix acts as the identity. The Ferrers diagram with just one entry
is the natural representation of n x n matrices on n-dimensional vectors. More
generally, the diagram with just one column containing 7 entries is the r-th exte-
rior power of the natural representation. In particular, when r = n, we obtain the
determinant representation in which all non-singular matrices act as the identity
but singular matrices act as 0. The Ferrers diagram with the maximal allowable
number of entries, corresponding to the triangular partition (n,n —1,...,1), is
referred to as the Steinberg representation for the semigroup M (n,Fs). The par-
tition (n—1,...,1,0) is the Steinberg representation for the group GL(n, Fs). If
a Ferrers diagram with A\, = 0 is interpreted as a representation of GL(n,F,),
then adding 1 to each \; produces a full Ferrers diagram (now A, = 1), which
corresponds to tensoring with the determinant representation, where the singular
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matrices now act as 0. Conversely, a representation of M(n, F3) corresponding
to a full Ferrers diagram may be interpreted in this way, as arising from a rep-
resentation of GL(n,F3). Of course any Ferrers diagram with )\, = 0 may also
be interpreted as a representation of M (n,F3) but it is not obvious how this is
related to the group interpretation, except in cases like the natural represention.
For more explanation on this point see Harris and Kuhn [17].

For further discussion of the representation theory of M(n,F;) we need to
work with the equivalent theory of the representations of the semigroup algebra

]FQ[M(naF2)]

An element e in an algebra is called idempotent if e? = e. The elements
0,1 are the trivial idempotents. Two idempotents e, f are orthogonal if ef =
fe = 0. An idempotent e is primitive if it cannot be written as a sum two non-
trivial orthogonal idempotents. The idempotent is central if it commutes with all
elements of the algebra. A central idempotent is centrally primitive if it is not
the sum of non-trivial orthogonal central idempotents. In the finite dimensional
algebras that concern us, there is a uniquely determined finite set of centrally
primitive idempotents whose sum is the identity of the algebra.

Example 3.1 There are three centrally primitive idempotents in the semigroup
algebra Fo[M (n,F2)].

Then we see that

l=2zp4+ 21+ 20

and it can be checked that these idempotents are orthogonal. The display is ar-
ranged to highlight the sums of the non-singular matrices in z; and z3, which pro-
vide the two centrally primitive idempotents in the group algebra Fo[GL(2,Fy)].
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In the semigroup algebra Fo[M(n,F2)] each central idempotent decomposes
into a sum of orthogonal primitive idempotents. This decomposition is not
unique. It turns out that the conjugacy classes of the primitive idempotents
are in bijective correspondence with the irreducible representations A. Let 8(A)
denote the dimension of the representation associated with the partition A. Then
there is a decomposition of the identity of the algebra into a maximal set of
orthogonal primitive idempotents

()

1= ZZ Es s,
A i=1

where the ey ;, for 1 <7 < §(A), is a set of conjugate primitive orthogonal idem-
potents associated with the same irreducible representation A. It is customary to
write, somewhat inaccurately,

1= Z 5()\)6)\,
A

where e, stands for a typical idempotent associated with A. Although the de-
composition of 1 into orthogonal primitive idempotents is not unique, any two
such sets of idempotents are conjugate by an invertible element in the semigroup
ring in a way that matches idempotents associated with the same irreducible rep-
resentation. In particular, in any decomposition of 1 into orthogonal primitive
idempotents, there will be some way of grouping the idempotents into subsets
which add up to the central idempotents but exactly how this works is a com-
plicated matter to do with block theory of modular representations. We content
ourselves here with an illustration of how it works for one particular decomposi-
tion in the case of 2 x 2 matrices over Fs. '

Example 3.2 There are siz elements in any choice of a mazimal set of primitive
orthogonal idempotents decomposing 1 in Fo[M(n,Fy)]. Such a set can be chosen
to refine the central idempotents in the following way.



ooy, (00 10 01
w=(10)+(0 1)+ (o) (0 1)
11 L1 01 10
(18)+Go)(To)+(o1)
, (10 00 11 00
“321’(0 0)+(1 o)t loo)T\11
01 11 01 10
(21)+(o1)+(T0)+(s 1)
Then we have the following decompositions of the central idempotents
w=¢ey, z=e1t+e +en, 2z2=en+ey
and the mazimal decomposition of the identity
1=ep+el+€ +e + e+ ey

Note that the eg,e1,€; are the singular parts of e11, €21,€h . On the other hand,
the non-singular parts go, 91,91 of €11, €2, ey, provide a mazimal set of three or-
thogonal primitive idempotents for the group algebra Fo[GL(2,TF,)).

The idempotent eg corresponds to the trivial representation of Fo[M (n,F2)]
with empty Ferrers diagram. The conjugate idempotents e; and e} are associated
with the natural representation, ej; with the determinant representation and the
conjugate idempotents es1, €y with the Steinberg representation. For GL(2,F,),
the idempotent go corresponds to the trivial representation and gi, g; are conju-
gate idempotents corresponding to the Steinberg representation, which happens
to coincide with the natural representation in case n = 2.

The action of M(n,Fs) on P(n) extends naturally to an action of the semi-
group ring Fy[M(n,F,)] and the idempotents induce a corresponding decompo-
sition of the polynomial algebra

P(n) = & 6(\)P(n)es,

compatible with the left action of the Steenrod algebra. Each ‘piece’ P(n)ex
occurs §(\) times in the decomposition and is an indecomposable A-submodule
(but no longer a right Fo[M(n, Fy)]-module). The dimension

va(X) = dim(P%(n)e,)

is the number of occurrencies of A as a composition factor in P%(n). One can
think of the action of e, on P%(n) as picking off a 1-dimensional vector subspace
of P4(n) for each occurrence of A as a composition factor.
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One way of tackling the hit problem for P(n) over A is to solve the hit
problem for each piece separately. If an element of P4(n)e, is hit in P(n) then it
is already hit in P¢(n)e,, as can be seen by applying the idempotent to both sides
of a hit equation in P(n). This approach to the hit problem demands good control
over the idempotents, which is lacking in general, but there are some interesting
particular cases where progress can be made. In particular, we see that the central
idempotents preserve symmetric functions and induce a decomposition of B(n)
into A-module summands. By following through the action of the idempotent
splitting in Example 3.2 on symmetric functions, we obtain a splitting of B(2)
into four A-submodules

B(2) =B(2)eo @ B(2)e; ® B(2)e1; ® B(2)ea,

where B(2)e; is isomorphic as an .4-module to B(1), generated by z% + z§ for
a > 0: the module B(2)e;; is isomorphic to the Dickson algebra D(2), generated
by

(21 + 22)* (2] +23) + (21 + 22)° (2% + 25) + 2z} + 235,

for a,b > 0: the module B(2)ey; is generated by
(z1 + 22)%(2} + 75) + (z1 + 2)b(2% + 22),

for a,b > 0. We note that B(2)e}, B(2)e),; are 0 and B(2)ey is trivial, concentrated
in dimension 0. By restricting to symmetric functions divisible by by z;z; we
obtain a splitting of the A-module M(2) into two pieces

M(2) = M(2)en; © M(2)eq,

where M(2)e;; is the Dickson algebra D(2).

It is debatable whether the attempt to solve the hit problem for B(2) by
decomposition methods is any better than the direct approach in arriving at
Theorem 2.11 but it does raise a number of interesting Problems 5.9, 5.12 and
5.11 about the algebraic splittings of P(n), B(n), M(n) and hit problems for
individual pieces.

We now turn to some topological aspects of the problem.

3.1 Modular representations and topological splittings

We use the notation L(A) for a M(n,Fs)-module which affords the irreducible
representation corresponding to A. It is known that L()\) occurs as a composition
factor in P4(n) for some value of d. Indeed, it actually occurs as a submodule
of P%(n) for some (usually higher) value of d. The following statements indicate
when these phenomena first happen [6].
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Theorem 3.3 The irreducible M(n,Fy)-representation corresponding to the 2-
column regular partition A\ occurs for the first time as a composition factor in

Pé(n) in degree
=3 2-1
and for the first time as a submodule in Pé(n) in degree

n(\) = Z jarl

In the above formulae we note that the (()\) < n()\) except when X is a triangular
sequence (m,m — 1,...,2,1). Note also that n(A) = ((X).

Since a singular matrix must annihilate some non-zero element in Pé(n) for
d > 0, it follows that the trivial representation of M(n,F3) can only occur once,
namely in dimension 0. This is consistent with the fact that the trivial repre-
sentation corresponds to the empty Ferrers diagram where all \; = 0, in which
case ( =7 = 0. On the other hand the determinant representation, where A; =1
for 1 < i < m, occurs for the first time in degree ( = n as a composition factor
headed by the product of the variables z;---z,. As a submodule it appears for
the first time in degree n = 2" — L.

Little is known about the odd prime analogue of the first occurrence problem
as a composition factor, although a few cases are resolved [4]. The first occurrence
as a submodule is known for all primes [25]. Even where we have explicit models
for the irreducible representations of M (n, F2) as submodules of P(n), there seems
to be no known closed formulae for their dimensions.

We now explain how the numbers §(}), va(}),{(A),n(A) can be interpreted
topologically. For an early reference on the use of idempotents in splitting sus-
pended spaces we cite [9].

Recall that P(n) is the cohomology of the product of n copies of infinite
real projective space, otherwise known as the classifying space B (Z/2)" of the
group (Z/2)". Let Y denote the suspension of B(Z/2)". For each irreducible
representation A of M(n,F,) there is an associated topological space Y, such
that, up to homotopy type, ¥ decomposes into the one-point union

bl V,\ﬁ(A)Y,\,

each Y, occurring §()\) times in the splitting. The cohomology H* (Y3, Fa) can
be identified with P(n)ex, with a shift in grading. In particular the dimension
of H4(Y3,Fy) is v4(\) and ((A) corresponds to the connectivity of the piece Y,.
None of the pieces Y3 can be further split stably into a one-point union of non-
trivial spaces. The piece associated with the idempotent corresponding to the
trivial representation, given by the empty Ferrers diagram, is a single point. In
practice, therefore, there are 2" — 1 interesting spaces in the splitting of Y.
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We refer to [15, 27, 28, 33] for a detailed analysis of the topological pieces
obtained for the case n = 2 in the stable splittings of B(Z/2) and BO(2). In the

terminology of Example 3.2 there is a stable homotopy equivalence
Y’:%VZHVK;VZ}ZQL

We have topological Problems 5.15, 5.16, analogous to the algebraic Problems
5.9.5.12.
We now look at a few particular problems related to the general discussion
above. ‘

3.2 Linking first occurences by Steenrod operations

In this section we shall describe an explicit Steenrod operation which links the
first occurrence of the irreducible representation A as composition factor with its
first occurrence as submodule in P(n). We need some preliminary notation.

In the Ferrers diagram of ), the kth anti-diagonal of A consists of the nodes
(,7) such that i + j = k + 1. Suppose the nodes of the k-th anti-diagonal are
(k,1),(k—1,2),...,(k—s+1,s). The associated van der Monde determinant is
defined by

T Tg-1 .- Tg—s+l
2 2 2
T Tl o Tkestl
ve(A) = ) . .
23—1 2:—1 25—1
T Teo1 -+ Tr_sy1

The product of these expressions is denoted by
v() = [ o).
k

For example, when A = (2,1,1),
'U(A) =1 [371:33%] * T3 = ﬁ’xzmg -+ :rf:c%:z:g

In general, the ‘leading’ term of v(}), i.e. the monomial with highest expo-
nents in the left lexicograhic order, is [ ], xi“"“‘l, which is a spike. The polynomial
v(A) is therefore not hit.

We shall also use following notation for the particular van der Monde deter-

minant

:E]_ .’L‘2 P xn
2 2 2
: g omect iy Zr  ses B
’w(‘n)=[3:1,232,-“,$n ]: )
21'1.-1 21’1—1 211—1
3 T3 ae BB

9qQ



where the shorthand form in square brackets lists just the diagonal elements of
the determinant. Then we associate with A the polynomial

w(A) = Hwk(}‘k)-

For example, when A = (2,1, 1),
w()) = [z1,23)z2zs,  w(N) = [z, 23, 7570

Note that deg(v())) = n(\),deg(w(X)) = ((A). We now state the main results
[41].

Theorem 3.4 Let A be a 2-column reqular partition of length n. Then the cor-
responding irreducible M (n,F2)-module L(\) appears as a top composition factor
of the module generated in Pcxy(n) by v(A) and also as the submodule in P,oy(n)
generated by w(X').

Theorem 3.5 Let ) be a 2-column regular partition of lengthn. For1 < k < Ay,
let T = (2)\% — ]_) — ZiSI\L 2Ai—k. Then

x(5¢Sq™ ... Sg™ )v(A) = w(XN).

The sequence of numbers (71,72, ...,7s,) can be conveniently calculated from
the tableau obtained by inserting integers into the Ferrers diagram of A as follows:
if the (4, ;) is the highest node in its antidiagonal, insert 2~* — 1 in that position
and continue down the diagonal by doubling the number entered at each step.
The sum of the numbers entered in column k is then 7.

Example 3.6 For A = (3,3,2,2,1) we obtain (ry,rs,73) = (18,9,1) using the
tableau shown below.

0(0|0
010(1
012
4 |7
14

The statement of Theorem 3.5 in this case is
X(Sqlgsqgsql)(ml : [Il%mg] : [11:1,:13%,2%] ! [1'2’53%1:32] ) [SL‘4,:C§])

= [zl,mg,x‘é,xi,xés] ' [xlvmgaxgsxi] ’ [231,5133].
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3.3 The Steinberg piece

The Steinberg representation of GL(n,F), corresponding to the triangular se-
quence
St =(n—1;:::;1,0)

plays a special role in the representation theory of the general linear group. Every
occurrence of St is a submodule. The following statement solves the hit problem
for the Steinberg piece [41] arising from the general linear group.

Theorem 3.7 There is a choice of indecomposable idempotent eg; in the group
algebra Fo[GL(n, Fy)] associated with the Steinberg representation St of GL(n,Fs)
such that the piece P(n)es; is generated minimally by the symmetrised spikes

o223 - 257),

for distinct exponents dy,ds, . .-, dn.

The actual choice of idempotent eg; is constructed as follow_s. Let U, denote
the sum of the upper triangular matrices in GL(n,F2) and I';, the sum of the
elements in the symmetric group ¥,. Then

Egt — Unzn.

By construction we see that the action of this particular choice of Steinberg
idempotent on P(n) preserves symmetric functions and therefore splits B(n) into
a Steinberg piece and another piece. We refer to [27, 28, 33] for the topological
realisation of this splitting and to (39, 29] for the stable splitting of BO(n) into
pieces corresponding to the submodules T(r) mentioned in Proposition 2.4.

3.4 The trivial piece

Recently, Hung and Nam [19] have proved Hung’s conjecture that all elements in
the Dickson algebra D(n) are hit in P(n) for n > 3. Now the Dickson algebra
is only a part of the piece P(n)gy , corresponding to the trivial representation
of the group GL(n,F3). The Dickson algebra affords the submodule occurrences
of the trivial representation in P(n). The hit problem for the Dickson algebra
itself is difficult and has only been solved for small values of n [20]. It would
be interesting to give a a minimal generating set for P(n)go by analogy with the
Steinberg case. The Hung-Nam result says that all submodule occurences are hit
by earlier composition factors in the determinant piece at least for n > 3.

We saw earlier how, in the case n = 2, the idempotent e:; splits off the Dickson
algebra D(2) from M(2). Now D(2) is topologically realisable by H*(BSO(3))
over the field of two elements. This raises again the question concerning the
topological splitting of Thom complexes MO(n).
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4 The hit problem for the differential operator
algebra

The action of the Steenrod square Sg* on P(n) can be lifted to the action of an
operator SQ on the polynomial algebra

W (n) = Z[z1,22, . - -, Tn]

over the integers. Integral squaring operators are members of a larger ring of
operators D, called the differential operator algebra. The formal definition of D
and some of its properties can be found in [49, 48]. Topologists know D as the
Landweber-Novikov algebra. For present purposes we recall from [49, 48] some
of the main features concerning the action of D on W(n). An additive basis for
D is formed from wedge products of the primitive partial differential operators

0
De=D o g

i>1

for k > 1, acting in the usual on W(n). Although Dy is formally an infinite
sum, its action on a polynomial involves only a finite number of variables in
any instance. The wedge product V of two differential operators, with variable
coefficients, is defined by allowing the derivatives of the first operator to pass the
variable coefficients of the second operator without acting. The wedge product is
commutative and gives the term of highest differential order in the composition
of the operators. For example, the composite D, o D, is given by

9 Y 0 e
et (g = 2wty + X Aol

i>1 i>1 i>1 (1,2

where the last summation is taken over all 2-vectors of non-negative integers
(i1,42). Hence Dy o Dy = 2Dy + D1 V D, It should be noted that D; V D is
divisible by 2 as an integral operator. More generally, an iterated wedge product
is given by the formula

T

D,V D, V-V Dy, = z x;clﬁ-l - xf:ﬂ_é_xu_aéx_tr,

where the summation is taken over all r-vectors of non-negative integers. It can
be seen from this that the iterated wedge product D)" is divisible by 7! as an
integral operator. By definition, D is generated over the integers by the divided
operators D)7 /r! under wedge product. For convenience we use the multiset
notation K = kJ*ky? ... k% to denote a set of positive distinct integers k; repeated
r; times. Then

DVrl DV'rz Dv-ra
D(K):LV__@_\/...V_’CE_.
7! rol 7,
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denotes the iterated wedge product of divided differential operators. For example,

VT
D(k)= Dy, D)= 24

rl

The collection D(K), as K ranges over multisets of distinct integers, forms an
additive basis for D. A significant fact is that D is closed under composition of
operators. Furthermore, the natural coproduct ¥(D,) = 1® D,+D,®1 makes D
into a Hopf algebra with respect to both the composition and the wedge products.

We define the integral Steenrod squares by SQ™ = D(17). It is shown in [49]
that the modulo 2 reduction of SQ* is Sq*. For example

SQ'=D(1) = Zz?i.

Additively, the Steenrod algebra is generated by the modulo 2 reductions of those
D(K) for which the elements K have the form k; = 2% — 1. This is called the
Milnor basis of the Steenrod algebra.

Since D is defined over the integers we have the possibility of reduction at
any prime as well as rational reduction. For example, the collection of modulo p
reductions of those D(K) for which the elements of K have the form k; = p* —1
constitute the Milnor basis of the Steenrod algebra of p-th power operators at
an odd prime p. The analogue of SQ™ = D(1") in the odd prime case is P" =
D((p—1)).

We can pose the hit Problem 5.19 for the action of the differential operator
algebra D on W(n) over the integers, but this would seem to be a very difficult
question to answer in more than a few variables. For n = 1 the answer is simple
because Di(z) = z**!. Hence Q(W(1)) has rank 1 generated by z;. This result
generalises in the following way. Note first of all that the action of D commutes
with the right action of the symmetric group because the differential operators
are themselves symmetric in the variables and partial derivatives. On the other
hand it does not commute with the action of all matrices over the integers. We
lose the analogue of the Dickson algebra but retain the representation theory of
the symmetric group. In particular we can study the hit problem for symmetric
polynomials over the integers, viewed as a D-module.

Theorem 4.1 Any symmetric polynomial in W(n)*~ divisible by z, - - -z, and
of degree strictly greater than n is hit by a differential operator in D.

Problems 5.20 remain for representations of the symmetric group other than

the trivial one. Since integral representation theory of X, is difficult, we look
instead at modular and rational reductions.
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4.1 The hit problem for D modulo 2

Integral results about the action of D on W(n) can be passed down to modular
reductions. For example the statement of Theorem 4.1 is true for the action of
D ® F, on P(n). As observed earlier D ® F, contains A as a sub-algebra. To
solve the hit problem for the action of A on P(n), we might ask a prior question
about the hit problem for P(n) as a D ®F,;-module, where we would expect fewer
elements in a minimal generating set than in the Steenrod algebra case.

For two variables, the answer has been worked out by Walker and Xiao and
appears in the second author’s doctoral thesis.

Theorem 4.2 For the action of D@ Fy on P(2) a basis for Q(P(2)) is given by
the monomials 1,.’12]_,22,33%2:2,.’13?“_1332 forn > 1.

For comparison we quote the corresponding result for the Steenrod algebra.

Theorem 4.3 For the action of A on P(2), a basis for Q(P(2)) is given by the
the monomials 2 'z ~* for k,7 > 0, and :rf“'lxga_l_lﬂa(zb—l) fora,b>1.

In the general n-variable problem spikes are never hit under the action of the
Steenrod algebra but can be hit under the action of differential operator algebra.
There is a question about the exact relationship between the the two hit Problems
5.18.

4.2 The rational hit problem for D

In this section we shall write Q(n) as a temporary notation for Q(W(n) ® Q). It
can be shown that D ® Q is generated under composition by the operators D.
In fact Dy, D, form a minimal algebraic generating set. The hit problem in this
case reduces to the question of finding criteria on a polynomial g such that the
differential equation

Difi+Dyfa=g

can be solved for polynomials fi, fo. In the two-variable case, it can be shown
that 1, z1, T, Z1 29, ToTo form a basis of Q(2). In particular, the quotient is finite
dimensional, as in Example 1.2. Furthermore, the differential equation Dy fi +
D, fs = g can be solved for any homogeneous polynomial g of degree at least 4.
Another similarity with Example 1.2 is that the monomials z,z, z2zo generate
the regular representation of Xy in Q(2). The monomial z,z, generates the
trivial representation, and the equation Dy (z1z2) = 1239 + 1172 shows that T31s
generates the sign representation of ¥y in Q(2).
In the case of three variables, n = 3, it is shown in [43] that the monomials
1,21, 22, T3, T1Z2, T1T3, T2T3,
23x9, 2323, T2T3, T1Z2T3, T1T5Ts, T1T2T3, TAT2LE, T1 7223, T1 5T
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generate Q(3). The regular representation is generated by those monomials in
the list which are divisible by z:1z5z3. This time, the differential equation D1 f1+
D, fs = g can be solved if the homogeneous polynomial g has degree at least 7.
In the general case of n variables, it is known that Q(n) is finite dimensional.
However, the following conjecture, suggested by the above particular cases, seems
harder to prove.

Conjecture 4.4 For the action of the differential operator algebra D ® Q on
the polynomial algebra Q[zy,- -+, Zn), Q(n) contains the regular representation of
the symmetric group T, generated by the monomials divisible by the product of
the variables T, - - T,. In particular, the highest grading of Q(n) is d = n(n +
1)/2 and, in this grading, Q%(n) is the 1-dimensional sign representation of Zn,
generated by the z,2% - --z%. Furthermore, monomials of the form

R

where 1 < i, < r, form a basis of the part of Q(n) divisible by z1 - - - ZTn.

This conjecture implies, in particular, that every homogeneous polynomial f
of degree greater than n(n + 1)/2 is hit; in other words, the differential equation

Difi+Dafa=g

can be solved for any g in these degrees. There is clearly a close connection
between the representation theory of the symmetric group and the hit problem
for the differential operator algebra. The decomposition of W ® Q by a complete
set of orthogonal idempotents associated with the irreducible representations of
¥, is preserved by the action of D ® Q. The piece of W ® Q corresponding to
the trivial representation is the subspace of symmetric polynomials.

4.3 Remark

The algebra D preserves rings of invariants of permutation groups. More precisely,
if T' C £, is a subgroup the symmetric group, then W' is a left module over D.
It would be interestind to investigate such modules both rationally and in the
modular cases.
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5 Problems

The following list of problems refers mainly to the prime 2 unless otherwise stated.
There are of course analogous problems at any prime.

Problem 5.1 Find o minimal generating set for P(n) as a module over A for
n > 4.

Problem 5.2 Is the best bound for dim Q#(P(n)) the product (1)(3)--- (2" —1)?

Problem 5.3 Is it true that the product of two non-hit polynomials in disjoint
sets of variables is non-hit over A?

Problem 5.4 Is it true that if a monomial in P(n) is non-hit over A, then some
matriz transformation of it contains a spike?

Problem 5.5 Find a formula for the ezcess of O, where © is a composite of
Steenrod squares, with a view to enhancing the use of the x-trick.

Problem 5.6 Find a minimal generating set for B(n) as a module over A for
n > 4.

Problem 5.7 If f is a kit monomial in P(n) over A, is its symmetrisation o(f)
hit symmetrically in B(n)?

Problem 5.8 What is the best bound for the dimension of Q*(B(n)) as a func-
tion of n independent of d?

Problem 5.9 Describe, for general n, the pieces of the mazimal splitting of P(n)
afforded by a complete set of orthogonal primitive idempotents in the semigroup
ring Fo[M(n,F,)]. How many distinct pieces are there? How many times does a
piece occur. Find the Poincaré series of the pieces.

Problem 5.10 How do we write down the central idempotents in Fa[M(n,F2)]?
How do they decompose into primitives?
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Problem 5.11 Describe the subalgebra of the semigroup algebra
FQ[M(TL, IFQ]

whose action on P(n) preserves symmetric functions. In particular find idempo-
tents in this algebra.

Problem 5.12 Describe, for general n, the pieces of the mazimal splitting of
B(n) and M(n) afforded by a complete set of symmetry preserving orthogonal
idempotents in the semigroup algebra Fo[M (n,F2)]. How many pieces are there?
How many times does a piece occur?

Problem 5.13 Solve the first occurrence problems for the irreducible modules

of general linear groups as composition factors in the polynomial algebra at odd
primes.

Problem 5.14 Solve the first occurrence problems for the irreducible modules of
the symmetric groups in the polynomial algebra at odd primes.

Problem 5.15 Find the Poincaré series of the pieces Yy in the splitting of
Z(RP*® x ... x RP%)
afforded by the irreducible representations A of the matriz semigroup M(n,Fs).

Problem 5.16 What is the mazimal splitting of the stable homotopy type of
BO(n)? How does it relate to the central idempotent splitting of B(n)?.

Problem 5.17 Does the Thom complez MO(n) split stably forn > 22

Problem 5.18 What is the relation between the hit problems for P(n) as a mod-
ule over A and as a module over D?

Problem 5.19 Solve the hit problem for the action of D on W(n) for n > 2
over the rationals.

Problem 5.20 Investigate hit problems for the action of D on the pieces of W (n)
split off by idempotents associated with irreducible representations of the symmet-
ric group ¥, in the modular case.
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Problem 5.21 Is it true that the product of two non-hit polynomials in disjoint
sets of variables is non-hit over D7

Problem 5.22 What is the best bound for dim(Q%(P(n)) for P(n) as a module
over D?

Problem 5.23 Investigate rings of invariants of permutation groups as modules
over D.
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